Geometry of horospherical products.

Tom Ferragut

Université de Montpellier

Table of contents

1. Gromov hyperbolic, Busemann spaces

Gromov boundary and Busemann functions
Vertical geodesics
2. Horospherical products

Construction
Geodesics and Visual boundary
3. Geometric rigidity of self quasi-isometries

Admissible desintegrable measures
Proof of the geometric rigidity
Quasi-isometry group of Solvable Lie groups

Motivations

Theorem (Farb-Mosher, 1999)
Classification up to quasi-isometry of Baumslag-Solitar groups $\operatorname{BS}(1, \mathrm{n})$.

Motivations

Theorem (Farb-Mosher, 1999)
Classification up to quasi-isometry of Baumslag-Solitar groups $\operatorname{BS}(1, \mathrm{n})$.

Theorem (Eskin-Fisher-Whyte, 2012)
Classification up to quasi-isometry of Diestel-Leader graphs DL(p,q) and of solvable Lie groups $\operatorname{Sol}(\mathrm{p}, \mathrm{q})$.

Theorem (Eskin-Fisher-Whyte, 2012)
There exists a regular graph which possess an isometry group acting transitively on it which is not quasi-isometric to any Cayley graph.

Gromov hyperbolic, Busemann spaces

Settings

(X, d_{X}) geodesic, locally compact, δ-hyperbolic space.

Settings

(X, d_{X}) geodesic, locally compact, δ-hyperbolic space.

+ Busemann space (The distance between two geodesics is convex)

Settings

(X, d_{X}) geodesic, locally compact, δ-hyperbolic space.

+ Busemann space (The distance between two geodesics is convex)

Examples:

Figure 1 - Tree

Figure 2 - Log model of the hyperbolic plane

Busemann functions or "height"

Definition (Gromov boundary and height function)

Let $\delta \geq 0$ and $\left(X, d_{X}\right)$ be a δ-hyperbolic space and let $x_{0} \in X$.

$$
\partial_{x_{0}} X:=\left\{\text { Geodesic rays starting at } x_{0}\right\} / \sim
$$

Let $a \in \partial_{x_{0}} X, k \in a$. The height function h_{X} on X in regards to a is :

$$
\forall x \in X, h_{X}(x)=-\beta_{a}(x)=\limsup _{t \rightarrow+\infty}\left(d_{X}(x, k(t))-t\right)
$$

Busemann functions or "height"

Definition (Gromov boundary and height function)

Let $\delta \geq 0$ and $\left(X, d_{X}\right)$ be a δ-hyperbolic space and let $x_{0} \in X$.

$$
\partial_{x_{0}} X:=\left\{\text { Geodesic rays starting at } x_{0}\right\} / \sim
$$

Let $a \in \partial_{x_{0}} X, k \in a$. The height function h_{X} on X in regards to a is :

$$
\forall x \in X, h_{X}(x)=-\beta_{a}(x)=\limsup _{t \rightarrow+\infty}\left(d_{X}(x, k(t))-t\right)
$$

Example:

$h(x, z)=z$ (in the \log model)

Figure 3 - Height in \mathbb{H}^{2}

Vertical geodesics

Definition (Vertical geodesics)
Let $\left(X, d_{X}\right)$ be a δ-hyperbolic space. We fix $a \in \partial X$. A geodesic line is called vertical if one of its half-line is equivalent to a ray in a.

Vertical geodesics

Definition (Vertical geodesics)
Let $\left(X, d_{X}\right)$ be a δ-hyperbolic space. We fix $a \in \partial X$. A geodesic line is called vertical if one of its half-line is equivalent to a ray in a.

Figure 4 - Vertical geodesics of \mathbb{H}^{2}

Horospherical products

Definition and Examples

Definition (Horospherical product)

Let X and Y be two δ-hyperbolic spaces. Let h_{X} and h_{Y} be their respective height functions. The horospherical product $X \bowtie Y$ is :

$$
X \bowtie Y:=\left\{(x, y) \in X \times Y \mid h_{X}(x)=-h_{Y}(y)\right\}\left(=\bigcup_{z \in \mathbb{R}} X_{z} \times Y_{-z}\right)
$$

Definition and Examples

Definition (Horospherical product)

Let X and Y be two δ-hyperbolic spaces. Let h_{X} and h_{Y} be their respective height functions. The horospherical product $X \bowtie Y$ is :

$$
X \bowtie Y:=\left\{(x, y) \in X \times Y \mid h_{X}(x)=-h_{Y}(y)\right\}\left(=\bigcup_{z \in \mathbb{R}} X_{z} \times Y_{-z}\right)
$$

Figure $5-\mathbb{H}^{2} \bowtie \mathbb{H}^{2}=$ Sol

Figure $6-T_{3} \bowtie T_{3}=\operatorname{Cay}\left(\mathbb{Z}_{2} \imath \mathbb{Z}\right)$

Distance on $X \bowtie Y$

Definition ($d_{X \bowtie Y}$)
The distance $d_{X \bowtie Y}$ is the length path metric induced by $\frac{d_{X}+d_{Y}}{2}$ on $X \times Y$.

Distance on $X \bowtie Y$

Definition ($d_{X \bowtie Y}$)
The distance $d_{X \bowtie Y}$ is the length path metric induced by $\frac{d_{X}+d_{Y}}{2}$ on $X \times Y$.

Additional assumption on X and Y :
Geodesically complete (geodesics are infinitely extendable)
$\Rightarrow X \bowtie Y$ is connected

Distance on $X \bowtie Y$

Definition ($d_{X \bowtie Y}$)
The distance $d_{X \bowtie Y}$ is the length path metric induced by $\frac{d_{X}+d_{Y}}{2}$ on $X \times Y$.

Additional assumption on X and Y :
Geodesically complete (geodesics are infinitely extendable)
$\Rightarrow X \bowtie Y$ is connected
Theorem A (F, 2020)

$$
d_{X \bowtie Y}=d_{X}+d_{Y}-\Delta h \pm C
$$

Geodesic segments

Corollary
A geodesic segment α is close to the union of three vertical geodesics.

Geodesic segments

Corollary
A geodesic segment α is close to the union of three vertical geodesics.

Figure 7 - Geodesic segment of $X \bowtie Y$

Geodesic lines of $X \bowtie Y$

Theorem B (F, 2020)
Any geodesic line α of $X \bowtie Y$ verifies at least one of the two following statements :

1. α is close to a X-type geodesic.
2. α is close to a Y-type geodesic.

Geodesic lines of $X \bowtie Y$

Theorem B (F, 2020)
Any geodesic line α of $X \bowtie Y$ verifies at least one of the two following statements :

1. α is close to a X-type geodesic.
2. α is close to a Y-type geodesic.

Figure 8 - Geodesic line types

Visual boundary of $X \bowtie Y$

Corollary

Let $a_{X} \in \partial X$ et $a_{Y} \in \partial Y$. The visual boundary of $X \bowtie Y$ is :

$$
\partial(X \bowtie Y)=\left(\left(\partial X \backslash\left\{a_{X}\right\}\right) \times\left\{a_{Y}\right\}\right) \bigcup\left(\left(\partial Y \backslash\left\{a_{Y}\right\}\right) \times\left\{a_{X}\right\}\right)
$$

Visual boundary of $X \bowtie Y$

Corollary

Let $a_{X} \in \partial X$ et $a_{Y} \in \partial Y$. The visual boundary of $X \bowtie Y$ is :

$$
\partial(X \bowtie Y)=\left(\left(\partial X \backslash\left\{a_{X}\right\}\right) \times\left\{a_{Y}\right\}\right) \bigcup\left(\left(\partial Y \backslash\left\{a_{Y}\right\}\right) \times\left\{a_{X}\right\}\right)
$$

Figure 9 - Visual boundary of $X \bowtie Y$

Geometric rigidity of self quasi-isometries

Geometric rigidity

Assume :

- X and Y are endowed with admissible desintegrable measures.
- X and Y do not share the same parameter of exponential divergence $(m \neq n)$.

Geometric rigidity

Assume :

- X and Y are endowed with admissible desintegrable measures.
- X and Y do not share the same parameter of exponential divergence $(m \neq n)$.

Theorem C: Geometric rigidity ($\mathrm{F}, \mathbf{2 0 2 2}$)
Let $\Phi: X \bowtie Y \rightarrow X \bowtie Y$ be a (k, c)-quasi-isometry. There exist $C(k, c, \bowtie) \in \mathbb{R}, \Phi^{X}: X \rightarrow X$ and $\Phi^{Y}: Y \rightarrow Y$ two quasi-isometries such that :

$$
d_{\bowtie}\left(\Phi,\left(\Phi^{X}, \Phi^{Y}\right)\right) \leq C
$$

Geometric rigidity consequences

Theorem D (F, 2022)
Let $S_{1}=\mathbb{R} \ltimes_{A_{1}} N_{1}$ and $S_{2}=\mathbb{R} \ltimes_{A_{2}} N_{2}$ be two simply connected, negatively curved Lie groups (Heintze groups) such that $\operatorname{tr}\left(A_{1}\right) \neq \operatorname{tr}\left(A_{2}\right)$, then :

$$
\operatorname{QI}\left(\mathbb{R} \ltimes_{\operatorname{Diag}\left(A_{1},-A_{2}\right)}\left(N_{1} \times N_{2}\right)\right)=\operatorname{Bilip}\left(N_{1}\right) \times \operatorname{Bilip}\left(N_{2}\right)
$$

Geometric rigidity consequences

Theorem D (F, 2022)

Let $S_{1}=\mathbb{R} \ltimes_{A_{1}} N_{1}$ and $S_{2}=\mathbb{R} \ltimes_{A_{2}} N_{2}$ be two simply connected, negatively curved Lie groups (Heintze groups) such that $\operatorname{tr}\left(A_{1}\right) \neq \operatorname{tr}\left(A_{2}\right)$, then :

$$
\operatorname{QI}\left(\mathbb{R} \ltimes_{\operatorname{Diag}\left(A_{1},-A_{2}\right)}\left(N_{1} \times N_{2}\right)\right)=\operatorname{Bilip}\left(N_{1}\right) \times \operatorname{Bilip}\left(N_{2}\right)
$$

Bi-Lipschitz for the left-invariant Hamenstädt distance $\forall n, n^{\prime} \in N_{i}$:

$$
d_{\mathrm{Ham}}\left(n, n^{\prime}\right)=\exp \left(-\frac{1}{2} \lim _{s \rightarrow+\infty}\left(2 s-d_{S_{i}}\left((-s, n),\left(-s, n^{\prime}\right)\right)\right)\right)
$$

Admissible desintegrable measures

Let $\left(X, \mu^{X}\right)$ be a Gromov, Busemann measured metric space, μ^{X} is an admissible desintegrable measure if :

Admissible desintegrable measures

Let $\left(X, \mu^{X}\right)$ be a Gromov, Busemann measured metric space, μ^{X} is an admissible desintegrable measure if :
(a) $\forall z \in \mathbb{R}, \exists \mu_{z}^{X}$ measure on X_{z} such that $\forall U \subset X$:

$$
\mu^{X}(U)=\int_{z \in \mathbb{R}} \mu_{z}^{X}\left(U_{z}\right) \mathrm{d} z
$$

Where :

$$
\text { - } U_{z}=U \cap h^{-1}(z)
$$

Admissible desintegrable measures

Let $\left(X, \mu^{X}\right)$ be a Gromov, Busemann measured metric space, μ^{X} is an admissible desintegrable measure if :
(a) $\forall z \in \mathbb{R}, \exists \mu_{z}^{X}$ measure on X_{z} such that $\forall U \subset X$:

$$
\mu^{X}(U)=\int_{z \in \mathbb{R}} \mu_{z}^{X}\left(U_{z}\right) \mathrm{d} z
$$

(b) There exists $r>0$ such that $\forall a, b \in X, \mu_{h(a)}^{X}\left(B_{r}(a)\right) \asymp \mu_{h(b)}^{X}\left(B_{r}(b)\right)$

Where :

$$
U_{z}=U \cap h^{-1}(z)
$$

Admissible desintegrable measures

Let $\left(X, \mu^{X}\right)$ be a Gromov, Busemann measured metric space, μ^{X} is an admissible desintegrable measure if :
(a) $\forall z \in \mathbb{R}, \exists \mu_{z}^{X}$ measure on X_{z} such that $\forall U \subset X$:

$$
\mu^{X}(U)=\int_{z \in \mathbb{R}} \mu_{z}^{X}\left(U_{z}\right) \mathrm{d} z
$$

(b) There exists $r>0$ such that $\forall a, b \in X, \mu_{h(a)}^{X}\left(B_{r}(a)\right) \asymp \mu_{h(b)}^{X}\left(B_{r}(b)\right)$
(c) There exists $m>0$ such that $\forall z_{0} \in \mathbb{R}, \forall U \subset X_{z_{0}}$:

$$
\forall z \leq z_{0}, e^{m\left(z_{0}-z\right)} \mu_{z_{0}}^{X}(U) \asymp \mu_{z}^{X}\left(\pi_{z}(U)\right)
$$

Where :

- $U_{z}=U \cap h^{-1}(z)$
- $\pi_{z}(U)$ is the vertical projection of U on X_{z}.

Box-tiling of $X \bowtie Y$

Definition: Box $\mathcal{B}(x, R)$ in X.
Let $x \in X, R>0$ and $\mathcal{C}(x)$ a cell of nucleus x. ($\mathcal{C}(x) \sim$ rough horizontal disk centered at x)

$$
\mathcal{B}(x, R):=\bigcup_{z \in] h(x)-R ; h(x)]} \pi_{z}(\mathcal{C}(x))
$$

Box-tiling of $X \bowtie Y$

Definition: Box $\mathcal{B}(x, R)$ in X.
Let $x \in X, R>0$ and $\mathcal{C}(x)$ a cell of nucleus x. ($\mathcal{C}(x) \sim$ rough horizontal disk centered at x)

$$
\mathcal{B}(x, R):=\bigcup_{z \in] h(x)-R ; h(x)]} \pi_{z}(\mathcal{C}(x))
$$

Figure 10 - Box Tiling of X

Box-tiling of $X \bowtie Y$

Definition: Box $\mathcal{B}(x, R)$ in X.
Let $x \in X, R>0$ and $\mathcal{C}(x)$ a cell of nucleus x. $(\mathcal{C}(x) \sim$ rough horizontal disk centered at x)

$$
\mathcal{B}(x, R):=\bigcup_{z \in] h(x)-R ; h(x)]} \pi_{z}(\mathcal{C}(x))
$$

Figure 10 - Box Tiling of X

Figure 11 - Box in $X \bowtie Y$

Proof of Theorem C

Tile $X \bowtie Y$ with boxes $\mathcal{B}(R)$ of scale R (\sim cubes of side R) $\Phi: X \bowtie Y \rightarrow X \bowtie Y$, quasi-isometry

Proof of Theorem C

Tile $X \bowtie Y$ with boxes $\mathcal{B}(R)$ of scale R (\sim cubes of side R)

$$
\Phi: X \bowtie Y \rightarrow X \bowtie Y, \text { quasi-isometry }
$$

1) Coarse differentiation $\Rightarrow \exists$ a suitable scale R for the tiling

Proof of Theorem C

Tile $X \bowtie Y$ with boxes $\mathcal{B}(R)$ of scale $R(\sim$ cubes of side $R)$

$$
\Phi: X \bowtie Y \rightarrow X \bowtie Y, \text { quasi-isometry }
$$

1) Coarse differentiation $\Rightarrow \exists$ a suitable scale R for the tiling
2) Vertical quadrilaterals + good scale $R \Rightarrow$ On almost all boxes $\mathcal{B}(R)$ at scale $R, \Phi_{\mid \mathcal{B}} \approx\left(\Phi_{\mathcal{B}}^{X}, \Phi_{\mathcal{B}}^{Y}\right)$

Figure 12 - Vertical quadrilateral

Proof of Theorem C

Tile $X \bowtie Y$ with boxes $\mathcal{B}(R)$ of scale $R(\sim$ cubes of side R)

$$
\Phi: X \bowtie Y \rightarrow X \bowtie Y, \text { quasi-isometry }
$$

1) Coarse differentiation $\Rightarrow \exists$ a suitable scale R for the tiling
2) Vertical quadrilaterals + good scale $R \Rightarrow$ On almost all boxes $\mathcal{B}(R)$ at scale $R, \Phi_{\mid \mathcal{B}} \approx\left(\Phi_{\mathcal{B}}^{X}, \Phi_{\mathcal{B}}^{Y}\right)$
3) $m \neq n \Rightarrow \exists L \gg R$ such that on all boxes at scale L, $\Phi_{\mid \mathcal{B}} \approx\left(\Phi_{\mathcal{B}}^{X}, \Phi_{\mathcal{B}}^{Y}\right)$

Figure 12 - Vertical quadrilateral

Proof of Theorem C

Tile $X \bowtie Y$ with boxes $\mathcal{B}(R)$ of scale $R(\sim$ cubes of side $R)$

$$
\Phi: X \bowtie Y \rightarrow X \bowtie Y, \text { quasi-isometry }
$$

1) Coarse differentiation $\Rightarrow \exists$ a suitable scale R for the tiling
2) Vertical quadrilaterals + good scale $R \Rightarrow$ On almost all boxes $\mathcal{B}(R)$ at scale $R, \Phi_{\mid \mathcal{B}} \approx\left(\Phi_{\mathcal{B}}^{X}, \Phi_{\mathcal{B}}^{Y}\right)$
3) $m \neq n \Rightarrow \exists L \gg R$ such that on all boxes at scale L, $\Phi_{\mid \mathcal{B}} \approx\left(\Phi_{\mathcal{B}}^{X}, \Phi_{\mathcal{B}}^{Y}\right)$
4) Sequence of growing boxes $\mathcal{B}\left(L_{n}\right) \Rightarrow \Phi \approx\left(\Phi^{X}, \Phi^{Y}\right)$

Figure 12 - Vertical quadrilateral

Theorem C \Rightarrow Theorem D

We have: $\left(\mathbb{R} \ltimes_{A_{1}} N_{1}\right) \bowtie\left(\mathbb{R} \ltimes_{A_{2}} N_{2}\right)=\mathbb{R} \ltimes_{\operatorname{Diag}\left(A_{1},-A_{2}\right)}\left(N_{1}, N_{2}\right)$
We want : $\mathrm{QI}\left(\mathbb{R} \ltimes_{\operatorname{Diag}\left(A_{1},-A_{2}\right)}\left(N_{1} \times N_{2}\right)\right)=\operatorname{Bilip}\left(N_{1}\right) \times \operatorname{Bilip}\left(N_{2}\right)$

Theorem C \Rightarrow Theorem D

We have: $\left(\mathbb{R} \ltimes_{A_{1}} N_{1}\right) \bowtie\left(\mathbb{R} \ltimes_{A_{2}} N_{2}\right)=\mathbb{R} \ltimes_{\operatorname{Diag}\left(A_{1},-A_{2}\right)}\left(N_{1}, N_{2}\right)$
We want : $\mathrm{QI}\left(\mathbb{R} \ltimes_{\operatorname{Diag}\left(A_{1},-A_{2}\right)}\left(N_{1} \times N_{2}\right)\right)=\operatorname{Bilip}\left(N_{1}\right) \times \operatorname{Bilip}\left(N_{2}\right)$

1) Theorem $C \Rightarrow \exists \Phi_{i}$ q.i of $\mathbb{R} \ltimes_{A_{i}} N_{i}$ such that $\Phi \approx\left(\Phi_{1}, \Phi_{2}\right)$.

Theorem C \Rightarrow Theorem D

We have: $\left(\mathbb{R} \ltimes_{A_{1}} N_{1}\right) \bowtie\left(\mathbb{R} \ltimes_{A_{2}} N_{2}\right)=\mathbb{R} \ltimes_{\operatorname{Diag}\left(A_{1},-A_{2}\right)}\left(N_{1}, N_{2}\right)$
We want : $\mathrm{QI}\left(\mathbb{R} \ltimes_{\operatorname{Diag}\left(A_{1},-A_{2}\right)}\left(N_{1} \times N_{2}\right)\right)=\operatorname{Bilip}\left(N_{1}\right) \times \operatorname{Bilip}\left(N_{2}\right)$

1) Theorem $C \Rightarrow \exists \Phi_{i}$ q.i of $\mathbb{R} \ltimes_{A_{i}} N_{i}$ such that $\Phi \approx\left(\Phi_{1}, \Phi_{2}\right)$.
2) Φ_{1} height respecting $\Rightarrow \exists \Psi_{1}: N_{1} \rightarrow N_{1}$ such that $\Phi_{1} \approx\left(\mathrm{id}_{\mathbb{R}}, \Psi_{1}\right)$

Theorem C \Rightarrow Theorem D

We have: $\left(\mathbb{R} \ltimes_{A_{1}} N_{1}\right) \bowtie\left(\mathbb{R} \ltimes_{A_{2}} N_{2}\right)=\mathbb{R} \ltimes_{\operatorname{Diag}\left(A_{1},-A_{2}\right)}\left(N_{1}, N_{2}\right)$
We want : $\mathrm{QI}\left(\mathbb{R} \ltimes_{\operatorname{Diag}\left(A_{1},-A_{2}\right)}\left(N_{1} \times N_{2}\right)\right)=\operatorname{Bilip}\left(N_{1}\right) \times \operatorname{Bilip}\left(N_{2}\right)$

1) Theorem $C \Rightarrow \exists \Phi_{i}$ q.i of $\mathbb{R} \ltimes_{A_{i}} N_{i}$ such that $\Phi \approx\left(\Phi_{1}, \Phi_{2}\right)$.
2) Φ_{1} height respecting $\Rightarrow \exists \Psi_{1}: N_{1} \rightarrow N_{1}$ such that $\Phi_{1} \approx\left(\mathrm{id}_{\mathbb{R}}, \Psi_{1}\right)$
3) Show that $\Psi_{1} \in \operatorname{Bilip}\left(N_{1}, d_{\text {Ham }}\right)$.

Theorem C \Rightarrow Theorem D

We have: $\left(\mathbb{R} \ltimes_{A_{1}} N_{1}\right) \bowtie\left(\mathbb{R} \ltimes_{A_{2}} N_{2}\right)=\mathbb{R} \ltimes_{\operatorname{Diag}\left(A_{1},-A_{2}\right)}\left(N_{1}, N_{2}\right)$
We want : $\mathrm{QI}\left(\mathbb{R} \ltimes_{\operatorname{Diag}\left(A_{1},-A_{2}\right)}\left(N_{1} \times N_{2}\right)\right)=\operatorname{Bilip}\left(N_{1}\right) \times \operatorname{Bilip}\left(N_{2}\right)$

1) Theorem $C \Rightarrow \exists \Phi_{i}$ q.i of $\mathbb{R} \ltimes_{A_{i}} N_{i}$ such that $\Phi \approx\left(\Phi_{1}, \Phi_{2}\right)$.
2) Φ_{1} height respecting $\Rightarrow \exists \Psi_{1}: N_{1} \rightarrow N_{1}$ such that $\Phi_{1} \approx\left(\mathrm{id}_{\mathbb{R}}, \Psi_{1}\right)$
3) Show that $\Psi_{1} \in \operatorname{Bilip}\left(N_{1}, d_{\text {Ham }}\right)$.
4) $\Phi \approx\left(\mathrm{id}_{\mathbb{R}}, \Psi_{1}, \Psi_{2}\right) \quad(\Rightarrow(1, c)-\mathrm{QI})$

The End

Thank you for your attention.

