Geometry of horospherical products.

Tom Ferragut

Université de Montpellier

Table of contents

1. Gromov hyperbolic, Busemann spaces

Gromov boundary and Busemann functions

Vertical geodesics

2. Horospherical products

Construction

Geodesics and Visual boundary

3. Geometric rigidity of self quasi-isometries

Admissible desintegrable measures

Proof of the geometric rigidity

Quasi-isometry group of Solvable Lie groups

Theorem (Farb-Mosher, 1999)

Classification up to quasi-isometry of Baumslag-Solitar groups $\mathrm{BS}(1,n)$.

Theorem (Farb-Mosher, 1999)

Classification up to quasi-isometry of Baumslag-Solitar groups $\mathrm{BS}(1,n)$.

Theorem (Eskin-Fisher-Whyte, 2012)

Classification up to quasi-isometry of Diestel-Leader graphs DL(p,q) and of solvable Lie groups ${\rm Sol}(p,q).$

Theorem (Eskin-Fisher-Whyte, 2012)

There exists a regular graph which possess an isometry group acting transitively on it which is not quasi-isometric to any Cayley graph.

Gromov hyperbolic, Busemann spaces

 (X,d_X) geodesic, locally compact, $\delta\text{-hyperbolic}$ space.

 (X, d_X) geodesic, locally compact, δ -hyperbolic space.

+ Busemann space (The distance between two geodesics is convex)

 (X, d_X) geodesic, locally compact, δ -hyperbolic space.

+ Busemann space (The distance between two geodesics is convex) **Examples :**

Figure 1 - Tree

Figure 2 - Log model of the hyperbolic plane

Busemann functions or "height"

Definition (Gromov boundary and height function) Let $\delta \ge 0$ and (X, d_X) be a δ -hyperbolic space and let $x_0 \in X$.

 $\partial_{x_0} X := \{ \text{Geodesic rays starting at } x_0 \} / \sim$

Let $a \in \partial_{x_0} X$, $k \in a$. The **height function** h_X on X in regards to a is :

$$\forall x \in X, \ h_X(x) = -\beta_a(x) = \limsup_{t \to +\infty} \left(d_X(x, k(t)) - t \right)$$

Busemann functions or "height"

Definition (Gromov boundary and height function) Let $\delta \ge 0$ and (X, d_X) be a δ -hyperbolic space and let $x_0 \in X$.

 $\partial_{x_0} X := \{ \text{Geodesic rays starting at } x_0 \} / \sim$

Let $a \in \partial_{x_0} X$, $k \in a$. The **height function** h_X on X in regards to a is :

$$\forall x \in X, \ h_X(x) = -\beta_a(x) = \limsup_{t \to +\infty} \left(d_X(x, k(t)) - t \right)$$

h(x,z) = z (in the Log model)

Definition (Vertical geodesics)

Let (X, d_X) be a δ -hyperbolic space. We fix $a \in \partial X$. A geodesic line is called **vertical** if one of its half-line is equivalent to a ray in a.

Definition (Vertical geodesics)

Let (X, d_X) be a δ -hyperbolic space. We fix $a \in \partial X$. A geodesic line is called **vertical** if one of its half-line is equivalent to a ray in a.

Figure 4 – Vertical geodesics of \mathbb{H}^2

Horospherical products

Definition and Examples

Definition (Horospherical product) Let X and Y be two δ -hyperbolic spaces. Let h_X and h_Y be their respective height functions. The **horospherical product** $X \bowtie Y$ is :

$$X \bowtie Y := \left\{ (x, y) \in X \times Y \mid h_X(x) = -h_Y(y) \right\} \left(= \bigcup_{z \in \mathbb{R}} X_z \times Y_{-z} \right)$$

Definition and Examples

Definition (Horospherical product)

Let X and \dot{Y} be two δ -hyperbolic spaces. Let h_X and h_Y be their respective height functions. The **horospherical product** $X \bowtie Y$ is :

$$X \bowtie Y := \left\{ (x, y) \in X \times Y \mid h_X(x) = -h_Y(y) \right\} \left(= \bigcup_{z \in \mathbb{R}} X_z \times Y_{-z} \right)$$

Figure 5 – $\mathbb{H}^2 \bowtie \mathbb{H}^2 = Sol$

Figure 6 – $T_3 \bowtie T_3 = \operatorname{Cay}(\mathbb{Z}_2 \wr \mathbb{Z})$

Definition $(d_{X\bowtie Y})$ The distance $d_{X\bowtie Y}$ is the length path metric induced by $\frac{d_X+d_Y}{2}$ on $X \times Y$. **Definition** $(d_{X\bowtie Y})$ The distance $d_{X\bowtie Y}$ is the length path metric induced by $\frac{d_X+d_Y}{2}$ on $X \times Y$.

Additional assumption on X and Y:

Geodesically complete (geodesics are infinitely extendable) $\Rightarrow X \bowtie Y$ is connected **Definition** $(d_{X\bowtie Y})$ The distance $d_{X\bowtie Y}$ is the length path metric induced by $\frac{d_X+d_Y}{2}$ on $X \times Y$.

Additional assumption on X and Y:

Geodesically complete (geodesics are infinitely extendable) $\Rightarrow X \bowtie Y$ is connected

Theorem A (F, 2020)

$$d_{X\bowtie Y} = d_X + d_Y - \Delta h \pm C$$

Corollary

A geodesic segment α is close to the union of three vertical geodesics.

Corollary

A geodesic segment α is close to the union of three vertical geodesics.

Figure 7 – Geodesic segment of $X \bowtie Y$

Geodesic lines of $X \bowtie Y$

Theorem B (F, 2020) Any geodesic line α of $X \bowtie Y$ verifies at least one of the two following statements :

- 1. α is close to a X-type geodesic.
- 2. α is close to a Y-type geodesic.

Theorem B (F, 2020)

Any geodesic line α of $X\bowtie Y$ verifies at least one of the two following statements :

- 1. α is close to a X-type geodesic.
- 2. α is close to a Y-type geodesic.

Figure 8 - Geodesic line types

Visual boundary of $X \bowtie Y$

Corollary

Let $a_X \in \partial X$ et $a_Y \in \partial Y$. The visual boundary of $X \bowtie Y$ is :

$$\partial(X \bowtie Y) = \left(\left(\partial X \setminus \{a_X\} \right) \times \{a_Y\} \right) \bigcup \left(\left(\partial Y \setminus \{a_Y\} \right) \times \{a_X\} \right)$$

Visual boundary of $X \bowtie Y$

Corollary

Let $a_X \in \partial X$ et $a_Y \in \partial Y$. The visual boundary of $X \bowtie Y$ is :

 $\partial(X \bowtie Y) = \left(\left(\partial X \setminus \{a_X\} \right) \times \{a_Y\} \right) \bigcup \left(\left(\partial Y \setminus \{a_Y\} \right) \times \{a_X\} \right)$

Figure 9 – Visual boundary of $X \bowtie Y$

Geometric rigidity of self quasi-isometries

Assume :

- $\cdot \ X$ and Y are endowed with admissible desintegrable measures.
- · X and Y do not share the same parameter of exponential divergence $(m \neq n)$.

Assume :

- $\cdot \ X$ and Y are endowed with admissible desintegrable measures.
- · X and Y do not share the same parameter of exponential divergence $(m \neq n)$.

Theorem C : Geometric rigidity (F, 2022)

Let $\Phi: X \bowtie Y \to X \bowtie Y$ be a (k, c)-quasi-isometry. There exist $C(k, c, \bowtie) \in \mathbb{R}, \ \Phi^X: X \to X$ and $\Phi^Y: Y \to Y$ two quasi-isometries such that :

$$d_{\bowtie}\left(\Phi, (\Phi^X, \Phi^Y)\right) \le C$$

Theorem D (F, 2022) Let $S_1 = \mathbb{R} \ltimes_{A_1} N_1$ and $S_2 = \mathbb{R} \ltimes_{A_2} N_2$ be two simply connected, negatively curved Lie groups (Heintze groups) such that $\operatorname{tr}(A_1) \neq \operatorname{tr}(A_2)$, then :

 $QI\left(\mathbb{R} \ltimes_{\text{Diag}(A_1, -A_2)} (N_1 \times N_2)\right) = \text{Bilip}(N_1) \times \text{Bilip}(N_2)$

Theorem D (F, 2022) Let $S_1 = \mathbb{R} \ltimes_{A_1} N_1$ and $S_2 = \mathbb{R} \ltimes_{A_2} N_2$ be two simply connected, negatively curved Lie groups (Heintze groups) such that $\operatorname{tr}(A_1) \neq \operatorname{tr}(A_2)$, then :

$$\operatorname{QI}\left(\mathbb{R}\ltimes_{\operatorname{Diag}(A_1,-A_2)}(N_1\times N_2)\right) = \operatorname{Bilip}(N_1)\times \operatorname{Bilip}(N_2)$$

Bi-Lipschitz for the left-invariant Hamenstädt distance $orall n, n' \in N_i$:

$$d_{\operatorname{Ham}}(n,n') = \exp\left(-\frac{1}{2}\lim_{s \to +\infty} \left(2s - d_{S_i}\left((-s,n), (-s,n')\right)\right)\right)$$

(a) $\forall z \in \mathbb{R}, \exists \mu_z^X$ measure on X_z such that $\forall U \subset X$:

$$\mu^X(U) = \int_{z \in \mathbb{R}} \mu_z^X(U_z) \mathrm{d}z$$

Where :

$$\cdot \ U_z = U \cap h^{-1}(z)$$

(a) $\forall z \in \mathbb{R}, \ \exists \mu_z^X$ measure on X_z such that $\forall U \subset X$:

$$\mu^X(U) = \int_{z \in \mathbb{R}} \mu_z^X(U_z) \mathrm{d}z$$

(b) There exists r > 0 such that $\forall a, b \in X$, $\mu_{h(a)}^X(B_r(a)) \asymp \mu_{h(b)}^X(B_r(b))$

Where :

$$\cdot \ U_z = U \cap h^{-1}(z)$$

(a) $\forall z \in \mathbb{R}, \ \exists \mu_z^X$ measure on X_z such that $\forall U \subset X$:

$$\mu^X(U) = \int_{z \in \mathbb{R}} \mu_z^X(U_z) \mathrm{d}z$$

(b) There exists r > 0 such that $\forall a, b \in X$, $\mu_{h(a)}^X(B_r(a)) \asymp \mu_{h(b)}^X(B_r(b))$ (c) There exists m > 0 such that $\forall z_0 \in \mathbb{R}$, $\forall U \subset X_{z_0}$:

$$\forall z \le z_0, \ e^{m(z_0-z)} \mu_{z_0}^X(U) \asymp \mu_z^X(\pi_z(U))$$

Where :

- $\cdot \ U_z = U \cap h^{-1}(z)$
- $\cdot \pi_z(U)$ is the *vertical* projection of U on X_z .

Definition : Box $\mathcal{B}(x, R)$ in X. Let $x \in X$, R > 0 and $\mathcal{C}(x)$ a cell of nucleus x. ($\mathcal{C}(x) \sim$ rough horizontal disk centered at x)

$$\mathcal{B}(x,R) := \bigcup_{z \in [h(x)-R;h(x)]} \pi_z(\mathcal{C}(x))$$

Definition : Box $\mathcal{B}(x, R)$ in X. Let $x \in X$, R > 0 and $\mathcal{C}(x)$ a cell of nucleus x. ($\mathcal{C}(x) \sim$ rough horizontal disk centered at x)

$$\mathcal{B}(x,R) := \bigcup_{z \in]h(x) - R; h(x)]} \pi_z(\mathcal{C}(x))$$

Figure 10 – Box Tiling of X

Definition : Box $\mathcal{B}(x, R)$ in X. Let $x \in X$, R > 0 and $\mathcal{C}(x)$ a cell of nucleus x. ($\mathcal{C}(x) \sim$ rough horizontal disk centered at x)

$$\mathcal{B}(x,R) := \bigcup_{z \in]h(x) - R; h(x)]} \pi_z(\mathcal{C}(x))$$

Figure 10 - Box Tiling of X

Figure 11 – Box in $X \bowtie Y$

Tile $X \bowtie Y$ with boxes $\mathcal{B}(R)$ of scale R (~ cubes of side R) $\Phi: X \bowtie Y \to X \bowtie Y$, quasi-isometry

Tile $X \bowtie Y$ with boxes $\mathcal{B}(R)$ of scale R (~ cubes of side R) $\Phi: X \bowtie Y \to X \bowtie Y$, quasi-isometry

1) Coarse differentiation $\Rightarrow \exists$ a *suitable* scale R for the tiling

Tile $X \bowtie Y$ with boxes $\mathcal{B}(R)$ of scale R (~ cubes of side R)

 $\Phi: X \bowtie Y \to X \bowtie Y$, quasi-isometry

- 1) Coarse differentiation $\Rightarrow \exists$ a *suitable* scale R for the tiling
- 2) Vertical quadrilaterals + good scale $R \Rightarrow$ On almost all boxes $\mathcal{B}(R)$ at scale R, $\Phi_{|\mathcal{B}} \approx (\Phi_{\mathcal{B}}^X, \Phi_{\mathcal{B}}^Y)$

Figure 12 - Vertical quadrilateral

Tile $X \bowtie Y$ with boxes $\mathcal{B}(R)$ of scale R (\sim cubes of side R)

 $\Phi: X \bowtie Y \to X \bowtie Y$, quasi-isometry

- 1) Coarse differentiation $\Rightarrow \exists$ a *suitable* scale R for the tiling
- 2) Vertical quadrilaterals + good scale $R \Rightarrow$ On almost all boxes $\mathcal{B}(R)$ at scale R, $\Phi_{|\mathcal{B}} \approx (\Phi_{\mathcal{B}}^X, \Phi_{\mathcal{B}}^Y)$
- 3) $m \neq n \Rightarrow \exists L >> R$ such that on **all** boxes at scale L, $\Phi_{|\mathcal{B}} \approx (\Phi_{\mathcal{B}}^X, \Phi_{\mathcal{B}}^Y)$

Figure 12 - Vertical quadrilateral

Tile $X \bowtie Y$ with boxes $\mathcal{B}(R)$ of scale R (\sim cubes of side R)

 $\Phi: X \bowtie Y \to X \bowtie Y$, quasi-isometry

- 1) Coarse differentiation $\Rightarrow \exists$ a *suitable* scale R for the tiling
- 2) Vertical quadrilaterals + good scale $R \Rightarrow$ On almost all boxes $\mathcal{B}(R)$ at scale $R, \Phi_{|\mathcal{B}} \approx (\Phi_{\mathcal{B}}^X, \Phi_{\mathcal{B}}^Y)$
- 3) $m \neq n \Rightarrow \exists L >> R$ such that on **all** boxes at scale L, $\Phi_{|\mathcal{B}} \approx (\Phi_{\mathcal{B}}^X, \Phi_{\mathcal{B}}^Y)$
- 4) Sequence of growing boxes $\mathcal{B}(L_n) \Rightarrow \Phi \approx \left(\Phi^X, \Phi^Y\right)$

Figure 12 - Vertical quadrilateral

1) Theorem $\mathsf{C} \Rightarrow \exists \Phi_i \text{ q.i of } \mathbb{R} \ltimes_{A_i} N_i \text{ such that } \Phi \approx (\Phi_1, \Phi_2).$

- 1) Theorem $C \Rightarrow \exists \Phi_i \text{ q.i of } \mathbb{R} \ltimes_{A_i} N_i \text{ such that } \Phi \approx (\Phi_1, \Phi_2).$
- 2) Φ_1 height respecting $\Rightarrow \exists \Psi_1 : N_1 \to N_1$ such that $\Phi_1 \approx (\mathrm{id}_{\mathbb{R}}, \Psi_1)$

- 1) Theorem $\mathsf{C} \Rightarrow \exists \Phi_i \text{ q.i of } \mathbb{R} \ltimes_{A_i} N_i \text{ such that } \Phi \approx (\Phi_1, \Phi_2).$
- 2) Φ_1 height respecting $\Rightarrow \exists \Psi_1 : N_1 \to N_1$ such that $\Phi_1 \approx (\mathrm{id}_{\mathbb{R}}, \Psi_1)$
- 3) Show that $\Psi_1 \in \operatorname{Bilip}(N_1, d_{\operatorname{Ham}})$.

- 1) Theorem $C \Rightarrow \exists \Phi_i \text{ q.i of } \mathbb{R} \ltimes_{A_i} N_i \text{ such that } \Phi \approx (\Phi_1, \Phi_2).$
- 2) Φ_1 height respecting $\Rightarrow \exists \Psi_1 : N_1 \to N_1$ such that $\Phi_1 \approx (\mathrm{id}_{\mathbb{R}}, \Psi_1)$
- 3) Show that $\Psi_1 \in \operatorname{Bilip}(N_1, d_{\operatorname{Ham}})$.
- 4) $\Phi \approx (\mathrm{id}_{\mathbb{R}}, \Psi_1, \Psi_2) \quad (\Rightarrow (1, c) \mathsf{Ql})$

Thank you for your attention.

