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Theorem (Farb-Mosher, 1999)
Classification up to quasi-isometry of Baumslag-Solitar groups BS(1, n).

Theorem (Eskin-Fisher-Whyte, 2012)
Classification up to quasi-isometry of Diestel-Leader graphs DL(p, q) and

of solvable Lie groups Sol(p, q).

Theorem (Eskin-Fisher-Whyte, 2012)
There exists a regular graph which possess an isometry group acting

transitively on it which is not quasi-isometric to any Cayley graph.



Gromov hyperbolic, Busemann
spaces
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(X, dx) geodesic, locally compact, d-hyperbolic space.
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Figure 2 — Log model of the hyperbolic plane



Busemann functions or "height"

Definition (Gromov boundary and height function)
Let 6 > 0 and (X,dx) be a d-hyperbolic space and let 2y € X.

Ozo X := {Geodesic rays starting at xo}/ ~
Let a € 0,,X, k € a. The height function 2 x on X in regards to a is :

Vo € X, hx(z) = —Bq(z) = limsup (dx (z, k(t)) — t)

t——+o0
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Figure 3 — Height in H?



Vertical geodesics

Definition (Vertical geodesics)
Let (X, dx) be a d-hyperbolic space. We fix a € 0X. A geodesic line is

called vertical if one of its half-line is equivalent to a ray in a.
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Definition (Vertical geodesics)
Let (X, dx) be a d-hyperbolic space. We fix a € 0X. A geodesic line is

called vertical if one of its half-line is equivalent to a ray in a.
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Figure 4 — Vertical geodesics of H?



Horospherical products



Definition and Examples

Definition (Horospherical product)
Let X and Y be two J-hyperbolic spaces. Let hx and hy be their

respective height functions. The horospherical product X <Y is :

XY = {(:L',y) e X xY | hx(z) = fhy(y)} (— U x. x YZ>

z€R



Definition and Examples

Definition (Horospherical product)
Let X and Y be two J-hyperbolic spaces. Let hx and hy be their

respective height functions. The horospherical product X <Y is :

XY = {(:L',y) e X xY | hx(z) = fhy(y)} (— U x. x YZ>

z€R
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Figure 5 — H2 pq H2 = Sol igure 6 — Ty >0 Ty = Cay (221 Z)



Distance on X x Y

Definition (dxyy)
The distance dxwy is the length path metric induced by % on

X xY.
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Distance on X x Y

Definition (dxyy)
The distance dxwy is the length path metric induced by % on

X xY.

Additional assumption on X and Y :
Geodesically complete (geodesics are infinitely extendable)
= X Y is connected

Theorem A (F, 2020)
dxwy =dx +dy — A+ C



Geodesic segments

Corollary
A geodesic segment « is close to the union of three vertical geodesics.



Geodesic segments

Corollary
A geodesic segment « is close to the union of three vertical geodesics.

Figure 7 — Geodesic segment of X <Y’



Geodesic lines of X Y

Theorem B ﬁF, 2020)
Any geodesic line a of X 1Y verifies at least one of the two following

statements :

1. ais close to a X-type geodesic.
2. «is close to a Y-type geodesic.



Geodesic lines of X Y

Theorem B ﬁF, 2020)
Any geodesic line a of X 1Y verifies at least one of the two following

statements :

1. ais close to a X-type geodesic.
2. «is close to a Y-type geodesic.
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Figure 8 — Geodesic line types



Visual boundary of X Y

Corollary
Let ayx € 0X et ay € QY. The visual boundary of X 1Y is :

O(X aY) = (0% \ {ax}) x fay}) |J (0¥ \ {av}) x {ax})

10



Visual boundary of X Y

Corollary
Let ayx € 0X et ay € QY. The visual boundary of X 1Y is :

O(X aY) = (0% \ {ax}) x fay}) |J (0¥ \ {av}) x {ax})

(0Y \ {ay}) x {ax}

....................

X / '//aX\{ax}) x {av}

Figure 9 — Visual boundary of X Y
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Geometric rigidity of self
quasi-isometries



Geometric rigidity

Assume :

- X and Y are endowed with admissible desintegrable measures.

- X and Y do not share the same parameter of exponential divergence

(m # n).
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Geometric rigidity

Assume :

- X and Y are endowed with admissible desintegrable measures.

- X and Y do not share the same parameter of exponential divergence
(m # n).
Theorem C : Geometric rigidity (F, 2022)
Let ®: X Y — X Y be a (k, ¢)-quasi-isometry. There exist
C(k,c,<) €R, ®X : X — X and ®Y : Y — Y two quasi-isometries
such that :
dw (@, (@%,@Y)) < C
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Geometric rigidity consequences

Theorem D (F, 2022)
Let S; =R x4, N7 and Sy = R x4, Ny be two simply connected,

negatively curved Lie groups (Heintze groups) such that
tr(Ay) # tr(As), then :

QI (R [XDiag(Al,—Ag) (Nl X Ng)) = Blllp(Nl) X Blllp(NQ)
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Geometric rigidity consequences

Theorem D (F, 2022)
Let S; =R x4, N7 and Sy = R x4, Ny be two simply connected,

negatively curved Lie groups (Heintze groups) such that
tr(Ay) # tr(As), then :

QI (R [XDiag(Al,—Ag) (Nl X Ng)) = Blllp(Nl) X Blllp(NQ)
Bi-Lipschitz for the left-invariant Hamenstadt distance Vn,n’ € N; :

diam(n,n') = exp (—; lim (25 —ds, ((—s,n), (—s,n’))))

s—+oo
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Admissible desintegrable measures

Let (X, ™) be a Gromov, Busemann measured metric space, u* is
an admissible desintegrable measure if :
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Admissible desintegrable measures

Let (X, ™) be a Gromov, Busemann measured metric space, u* is
an admissible desintegrable measure if :

(a) Vz € R, Iuf measure on X, such that VU C X :

o= [ IRICATE

Where :
U, =Unh Y2)
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Admissible desintegrable measures

Let (X, ™) be a Gromov, Busemann measured metric space, u* is
an admissible desintegrable measure if :

(a) Vz € R, Iuf measure on X, such that VU C X :
WO = [ U
z€R
(b) There exists r > 0 such that Va,b € X, p,)f(a)(BT(a)) = uff(b)(BT(b))
(c) There exists m > 0 such that Vzo € R, VU C X, :
V2 < 20, €0 X (U) = i (. (U))

Where :
U, =Unh Y2)
- 7. (U) is the vertical projection of U on X .
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Box-tiling of X Y

Definition : Box B(z, R) in X.
Let 2 € X, R > 0 and C(x) a cell of nucleus x. (C(z) ~ rough horizontal

disk centered at x)

B(z,R) := U 7 (C(x))

z€)h(z)— R;h(x)]
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nRk s T O S orpe
(n— )R- —=~

Figure 10 — Box Tiling of X
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Box-tiling of X Y

Definition : Box B(z, R) in X.
Let 2 € X, R > 0 and C(x) a cell of nucleus x. (C(z) ~ rough horizontal

disk centered at x)

B(z,R) := U 7 (C(x))

z€)h(z)— R;h(x)]

nRk s T O S orpe
(n— )R- —=~ BX

Figure 10 — Box Tiling of X Figure 11 - Box in X > Y’
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Proof of Theorem C

Tile X 1Y with boxes B(R) of scale R (~ cubes of side R)

®: XY — X Y, quasi-isometry
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Proof of Theorem C

Tile X 1Y with boxes B(R) of scale R (~ cubes of side R)
®: XY — X Y, quasi-isometry

1) Coarse differentiation = 3 a suitable scale R for the tiling

2) Vertical quadrilaterals + good scale R = On almost all boxes
B(R) at scale R, @5 ~ (P35, P))

3) m #n = 3L >> R such that on all boxes at scale L,
¢~ (05, 0)

4) Sequence of growing boxes B(L,) = ® ~ (®X,®Y)

Figure 12 — Vertical quadrilateral
15



Theorem C = Theorem D

We have : (R D(Al Nl) > (R l><A2 Nz) =R lXDiag(Al,—AQ) (Nl,Nz)
We want : QI (R X Diag(A;,—As) (N1 X NQ)) = Blhp(Nl) X Blhp(Ng)
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Theorem C = Theorem D

We have : (R D(Al Nl) > (R l><A2 Nz) =R lXDiag(Al,—AQ) (Nl,Nz)
We want : QI (R X Diag(A;,—As) (N1 X NQ)) = Blhp(Nl) X Blhp(Ng)

1) Theorem C = 3 ®; q.i of R x4, N; such that ® ~ (&1, ®5).

2) @, height respecting = 3¥; : Ny — N; such that ®; = (idg, V1)
3) Show that ¥y € Bilip(Ny, diam)-

4) ¢ =~ (idg, ¥y, ¥s) ( = (1, c)—QI)
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The End

Thank you for your attention.
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