Geometry and quasi-isometry rigidity of horospherical products

Tom Ferragut

Differential Topology Seminar of Kyoto University

Hints on horospherical products

Hints on horospherical products

Figure 1 - Log model of the hyperbolic plane

Hints on horospherical products

Figure 1 - Log model of the hyperbolic plane

Horospherical product :

Hints on horospherical products

Figure 1 - Log model of the hyperbolic plane

Horospherical product :

Hints on horospherical products

Figure 1 - Log model of the hyperbolic plane

Horospherical product :

Hints on horospherical products

Figure 1 - Log model of the hyperbolic plane

Horospherical product :

Geometry of horospherical products

Figure 2 - Horospherical product $X \bowtie Y$

Geometry of horospherical products

Figure 2 - Horospherical product $X \bowtie Y$

Study the geometry of $X \bowtie Y$:

- Shapes and lengths of geodesics
- Description of the visual boundary
- Geometric rigidity of quasi-isometries

Table of contents

1. Gromov hyperbolic and Busemann spaces
2. Horospherical products and their geodesics
3. Geometric rigidity of quasi-isometries

Gromov program for classification of groups

Classifying groups up to quasi-isometry.

Gromov program for classification of groups

Classifying groups up to quasi-isometry.

QI rigid classes :

Gromov program for classification of groups

Classifying groups up to quasi-isometry.

QI rigid classes :

- Free Abelian groups (M Gromov ; P.Pansu)

Gromov program for classification of groups

Classifying groups up to quasi-isometry.

QI rigid classes :

- Free Abelian groups (M Gromov ; P.Pansu)
- Nilpotent groups, hyperbolic Groups (M.Gromov)

Gromov program for classification of groups

Classifying groups up to quasi-isometry.

QI rigid classes :

- Free Abelian groups (M Gromov; P.Pansu)
- Nilpotent groups, hyperbolic Groups (M.Gromov)

Non QI rigid class :

Gromov program for classification of groups

Classifying groups up to quasi-isometry.

QI rigid classes :

- Free Abelian groups (M Gromov; P.Pansu)
- Nilpotent groups, hyperbolic Groups (M.Gromov)

Non QI rigid class :

- Solvable groups (A.Erschler)

Classification of solvable groups

Classification of solvable groups

Theorem (Farb-Mosher, 1999)
Classification up to quasi-isometry of Baumslag-Solitar groups $\operatorname{BS}(1, \mathrm{n})$.

Classification of solvable groups

Theorem (Farb-Mosher, 1999)
Classification up to quasi-isometry of Baumslag-Solitar groups $\operatorname{BS}(1, \mathrm{n})$.

Theorem (Eskin-Fisher-Whyte, 2012)
Classification up to quasi-isometry of Diestel-Leader graphs DL(p,q) and of solvable Lie groups $\operatorname{Sol}(\mathrm{p}, \mathrm{q})$.

Classification of solvable groups

Theorem (Farb-Mosher, 1999)
Classification up to quasi-isometry of Baumslag-Solitar groups $\operatorname{BS}(1, \mathrm{n})$.

Theorem (Eskin-Fisher-Whyte, 2012)
Classification up to quasi-isometry of Diestel-Leader graphs DL(p,q) and of solvable Lie groups $\operatorname{Sol}(\mathrm{p}, \mathrm{q})$.

Theorem (Eskin-Fisher-Whyte, 2012)
There exists a regular graph which possess an isometry group acting transitively on it which is not quasi-isometric to any Cayley graph.

Gromov hyperbolic and
 Busemann spaces

Settings

Settings

Let (X, d_{X}) geodesic, locally compact, δ-hyperbolic space.

Settings

Let (X, d_{X}) geodesic, locally compact, δ-hyperbolic space.

+ Busemann space (The distance between two geodesics is convex) .

Settings

Let (X, d_{X}) geodesic, locally compact, δ-hyperbolic space.

+ Busemann space (The distance between two geodesics is convex). Examples:

Settings

Let (X, d_{X}) geodesic, locally compact, δ-hyperbolic space.

+ Busemann space (The distance between two geodesics is convex) .

Examples:

- CAT(-1)

Settings

Let (X, d_{X}) geodesic, locally compact, δ-hyperbolic space.

+ Busemann space (The distance between two geodesics is convex) . Examples:
- $\operatorname{CAT}(-1) \Rightarrow \mathbb{R} \ltimes_{A} N$

Settings

Let (X, d_{X}) geodesic, locally compact, δ-hyperbolic space.

+ Busemann space (The distance between two geodesics is convex). Examples:
- CAT $(-1) \Rightarrow \mathbb{R} \ltimes_{A} N \Rightarrow \mathbb{H}^{n}$

$$
\mathbb{R}^{2} ; d s^{2}=e^{-2 z} d x^{2}+d z^{2}
$$

Figure 3 - Log model of the hyperbolic
plane

Settings

Let $\left(X, d_{X}\right)$ geodesic, locally compact, δ-hyperbolic space.

+ Busemann space (The distance between two geodesics is convex) .

Examples:

- $\operatorname{CAT}(-1) \Rightarrow \mathbb{R} \ltimes_{A} N \Rightarrow \mathbb{H}^{n}$
- Trees

$$
\mathbb{R}^{2} ; d s^{2}=e^{-2 z} d x^{2}+d z^{2}
$$

Figure 3 - Log model of the hyperbolic plane

Figure 4 - Tree

Height functions and vertical geodesics

Height functions and vertical geodesics

Definitions

Let $x_{0} \in X$ and fix $a \in \partial_{x_{0}} X$. Let $k \in a$, the height function h_{X} on X with respect to a is :

$$
\forall x \in X, h_{X}(x)=-\beta_{a}(x)=\sup _{t \rightarrow+\infty}\left(d_{X}(x, k(t))-t\right)
$$

Height functions and vertical geodesics

Definitions

Let $x_{0} \in X$ and fix $a \in \partial_{x_{0}} X$. Let $k \in a$, the height function h_{X} on X with respect to a is :

$$
\forall x \in X, h_{X}(x)=-\beta_{a}(x)=\sup _{t \rightarrow+\infty}\left(d_{X}(x, k(t))-t\right)
$$

Figure 5 - Log model of \mathbb{H}^{2} :
$h(x, z)=z$

Height functions and vertical geodesics

Definitions

Let $x_{0} \in X$ and fix $a \in \partial_{x_{0}} X$. Let $k \in a$, the height function h_{X} on X with respect to a is :

$$
\forall x \in X, h_{X}(x)=-\beta_{a}(x)=\sup _{t \rightarrow+\infty}\left(d_{X}(x, k(t))-t\right)
$$

A geodesic is called vertical if one of its ends is in a.

Figure 5 - Log model of \mathbb{H}^{2} :
$h(x, z)=z$

Height functions and vertical geodesics

Definitions

Let $x_{0} \in X$ and fix $a \in \partial_{x_{0}} X$. Let $k \in a$, the height function h_{X} on X with respect to a is :

$$
\forall x \in X, h_{X}(x)=-\beta_{a}(x)=\sup _{t \rightarrow+\infty}\left(d_{X}(x, k(t))-t\right)
$$

A geodesic is called vertical if one of its ends is in a.

Figure 5 - Log model of \mathbb{H}^{2} :
$h(x, z)=z$

Figure 6 - Vertical geodesics of \mathbb{H}^{2}

Horospherical products and
their geodesics

Definition and Examples

Definition (Horospherical product)

Let X and Y be two δ-hyperbolic spaces. Let h_{X} and h_{Y} be their respective height functions. The horospherical product $X \bowtie Y$ is :

$$
X \bowtie Y:=\left\{(x, y) \in X \times Y \mid h_{X}(x)=-h_{Y}(y)\right\}\left(=\bigcup_{z \in \mathbb{R}} X_{z} \times Y_{-z}\right)
$$

Definition and Examples

Definition (Horospherical product)

Let X and Y be two δ-hyperbolic spaces. Let h_{X} and h_{Y} be their respective height functions. The horospherical product $X \bowtie Y$ is :

$$
X \bowtie Y:=\left\{(x, y) \in X \times Y \mid h_{X}(x)=-h_{Y}(y)\right\}\left(=\bigcup_{z \in \mathbb{R}} X_{z} \times Y_{-z}\right)
$$

Figure $7-\mathbb{H}^{2} \bowtie \mathbb{H}^{2}=$ Sol

Figure $8-T_{3} \bowtie T_{3}=\operatorname{Cay}\left(\mathbb{Z}_{2} \imath \mathbb{Z}\right)$

Distance on $X \bowtie Y$

Definition ($d_{X \bowtie Y}$)
The distance $d_{X \bowtie Y}$ is the length path metric induced by $N\left(d_{X}, d_{Y}\right)$ on $X \times Y$, with N an admissible norm of \mathbb{R}^{2}.

Distance on $X \bowtie Y$

Definition ($d_{X \bowtie Y}$)
The distance $d_{X \bowtie Y}$ is the length path metric induced by $N\left(d_{X}, d_{Y}\right)$ on $X \times Y$, with N an admissible norm of \mathbb{R}^{2}.

Additional assumption on X and Y :
Geodesically complete (geodesics are infinitely extendable)
$\Rightarrow X \bowtie Y$ is connected

Distance on $X \bowtie Y$

Definition ($d_{X \bowtie Y}$)
The distance $d_{X \bowtie Y}$ is the length path metric induced by $N\left(d_{X}, d_{Y}\right)$ on $X \times Y$, with N an admissible norm of \mathbb{R}^{2}.

Additional assumption on X and Y :
Geodesically complete (geodesics are infinitely extendable)
$\Rightarrow X \bowtie Y$ is connected
Theorem A ($\mathrm{F}, 2020$)
There exists $C(\delta, N) \geq 0$ such that :

$$
d_{X \bowtie Y}=d_{X}+d_{Y}-\Delta h \pm C
$$

Sketch of proof for Theorem A

Figure 9 - Sketch

Sketch of proof for Theorem A

Figure 9 - Sketch

Length of geodesic projections

Proposition

Let X be a δ-hyperbolic space and let c be a path of X. If $[p, q]$ is a geodesic segment linking the endpoints of c, then for all $x \in[p, q]$ we have

$$
d_{X}(x, \operatorname{im}(\mathrm{c})) \leq \delta\left|\log _{2} \mathrm{l}(\mathrm{c})\right|+1
$$

If $h^{+}(c) \leq h^{+}([p, q])-\Delta H$, Then :

$$
l(c) \geq d_{X}(p, q)+2^{\Delta H}
$$

Figure 10 - A not high enough path

Distance description

Let $p_{1}=\left(x_{1}, y_{1}\right)$ and $p_{2}=\left(x_{2}, y_{2}\right)$ be two points of $X \bowtie Y$ and let c be a path of $X \bowtie Y$ linking p_{1} to p_{2}. Then

$$
\begin{aligned}
l(c) & \geq \frac{l\left(c_{X}\right)+l\left(c_{Y}\right)}{2} \\
& \geq d_{X}\left(x_{1}, x_{2}\right)+d_{Y}\left(y_{1}, y_{2}\right)-\left|h\left(p_{1}\right)-h\left(p_{2}\right)\right|+2^{\Delta H_{X}}+2^{\Delta H_{Y}}
\end{aligned}
$$

Distance description

Let $p_{1}=\left(x_{1}, y_{1}\right)$ and $p_{2}=\left(x_{2}, y_{2}\right)$ be two points of $X \bowtie Y$ and let c be a path of $X \bowtie Y$ linking p_{1} to p_{2}. Then

$$
\begin{aligned}
l(c) & \geq \frac{l\left(c_{X}\right)+l\left(c_{Y}\right)}{2} \\
& \geq d_{X}\left(x_{1}, x_{2}\right)+d_{Y}\left(y_{1}, y_{2}\right)-\left|h\left(p_{1}\right)-h\left(p_{2}\right)\right|+2^{\Delta H_{X}}+2^{\Delta H_{Y}}
\end{aligned}
$$

Theorem A ($d_{X \bowtie Y}$)
There exists $C(\delta, N)$ such that

$$
d_{X \bowtie Y}=d_{X}+d_{Y}-\Delta h \pm C
$$

Corollary
$\left(X \bowtie Y, d_{l_{1}}\right)$ and $\left(X \bowtie Y, d_{l_{2}}\right)$ are $(1, C)$-quasi-isometric.

Geodesic segments

Corollary
A geodesic segment α is close to the union of three vertical geodesics.

Geodesic segments

Corollary

A geodesic segment α is close to the union of three vertical geodesics.

Figure 11 - Geodesic segment of $X \bowtie Y$

Geodesic lines of $X \bowtie Y$

Theorem B (F, 2020)
Any geodesic line α of $X \bowtie Y$ verifies at least one of the two following statements :

1. α is close to a X-type geodesic.
2. α is close to a Y-type geodesic.

Geodesic lines of $X \bowtie Y$

Theorem B (F, 2020)
Any geodesic line α of $X \bowtie Y$ verifies at least one of the two following statements :

1. α is close to a X-type geodesic.
2. α is close to a Y-type geodesic.

Figure 12 - Geodesic line types

Visual boundary of $X \bowtie Y$

Corollary
Let $a_{X} \in \partial X$ et $a_{Y} \in \partial Y$. The visual boundary of $X \bowtie Y$ is :

$$
\partial(X \bowtie Y)=\left(\left(\partial X \backslash\left\{a_{X}\right\}\right) \times\left\{a_{Y}\right\}\right) \bigcup\left(\left\{a_{X}\right\} \times\left(\partial Y \backslash\left\{a_{Y}\right\}\right)\right)
$$

Visual boundary of $X \bowtie Y$

Corollary

Let $a_{X} \in \partial X$ et $a_{Y} \in \partial Y$. The visual boundary of $X \bowtie Y$ is :

$$
\partial(X \bowtie Y)=\left(\left(\partial X \backslash\left\{a_{X}\right\}\right) \times\left\{a_{Y}\right\}\right) \bigcup\left(\left\{a_{X}\right\} \times\left(\partial Y \backslash\left\{a_{Y}\right\}\right)\right)
$$

Figure 13 - Visual boundary of $X \bowtie Y$

Visual boundary of $X \bowtie Y$

Corollary

Let $a_{X} \in \partial X$ et $a_{Y} \in \partial Y$. The visual boundary of $X \bowtie Y$ is :

$$
\partial(X \bowtie Y)=\left(\left(\partial X \backslash\left\{a_{X}\right\}\right) \times\left\{a_{Y}\right\}\right) \bigcup\left(\left\{a_{X}\right\} \times\left(\partial Y \backslash\left\{a_{Y}\right\}\right)\right)
$$

Figure 13 - Visual boundary of $X \bowtie Y$

Example : $\partial\left(\mathbb{R} \ltimes_{\operatorname{Diag}\left(A_{1},-A_{2}\right)}\left(N_{1} \times N_{2}\right)\right)=N_{1} \times N_{2}$

Proof of Theorems B

Figure 14 - Geodesic segment

- Two behaviours for geodesic segments : $\nearrow \searrow \nearrow$ or $\searrow \nearrow \searrow$.

Proof of Theorems B

Figure 14 - Geodesic segment

- Two behaviours for geodesic segments : $\nearrow \searrow \nearrow$ or $\searrow \nearrow \searrow$.
- Geodesic rays of $X \bowtie Y$ only change once of monotonicity.

Proof of Theorems B

Figure 14 - Geodesic segment

- Two behaviours for geodesic segments : $\nearrow \searrow \nearrow$ or $\searrow \nearrow \searrow$.
- Geodesic rays of $X \bowtie Y$ only change once of monotonicity.
- So do bi-infinite geodesics \Rightarrow Theoreme B

Proof of Theorems B

Figure 14 - Geodesic segment

- Two behaviours for geodesic segments : $\nearrow \searrow \nearrow$ or $\searrow \nearrow \searrow$.
- Geodesic rays of $X \bowtie Y$ only change once of monotonicity.
- So do bi-infinite geodesics \Rightarrow Theoreme B
- Geodesic ray classification \Rightarrow Characterisation of the visual boundary of $X \bowtie Y$

Geometric rigidity of

 quasi-isometries
Geometric rigidity

Assume :

- X, Y, X^{\prime} and Y^{\prime} are endowed with admissible disintegrable measures.
- X and Y (resp. X^{\prime} and Y^{\prime}) do not share the same exponential growth parameter $m>n$ (resp. $m^{\prime}>n^{\prime}$).

Geometric rigidity

Assume :

- X, Y, X^{\prime} and Y^{\prime} are endowed with admissible disintegrable measures.
- X and Y (resp. X^{\prime} and Y^{\prime}) do not share the same exponential growth parameter $m>n$ (resp. $m^{\prime}>n^{\prime}$).

Theorem C: Geometric rigidity ($\mathrm{F}, 2022$)
Let $\Phi: X \bowtie Y \rightarrow X^{\prime} \bowtie Y^{\prime}$ be a (k, c)-quasi-isometry. There exist $C(k, c, \bowtie) \in \mathbb{R}, \Phi^{X}: X \rightarrow X^{\prime}$ and $\Phi^{Y}: Y \rightarrow Y^{\prime}$ two quasi-isometries such that :

$$
d_{\bowtie}\left(\Phi,\left(\Phi^{X}, \Phi^{Y}\right)\right) \leq C
$$

Geometric rigidity consequences

Theorem D (F, 2022)
Let $S_{1}=\mathbb{R} \ltimes_{A_{1}} N_{1}$ and $S_{2}=\mathbb{R} \ltimes_{A_{2}} N_{2}$ be two simply connected, negatively curved Lie groups (Heintze groups) such that $\operatorname{tr}\left(A_{1}\right) \neq \operatorname{tr}\left(A_{2}\right)$, then :

$$
\operatorname{QI}\left(\mathbb{R} \ltimes_{\operatorname{Diag}\left(A_{1},-A_{2}\right)}\left(N_{1} \times N_{2}\right)\right)=\operatorname{Bilip}\left(N_{1}\right) \times \operatorname{Bilip}\left(N_{2}\right)
$$

Geometric rigidity consequences

Theorem D (F, 2022)

Let $S_{1}=\mathbb{R} \ltimes_{A_{1}} N_{1}$ and $S_{2}=\mathbb{R} \ltimes_{A_{2}} N_{2}$ be two simply connected, negatively curved Lie groups (Heintze groups) such that $\operatorname{tr}\left(A_{1}\right) \neq \operatorname{tr}\left(A_{2}\right)$, then :

$$
\operatorname{QI}\left(\mathbb{R} \ltimes_{\operatorname{Diag}\left(A_{1},-A_{2}\right)}\left(N_{1} \times N_{2}\right)\right)=\operatorname{Bilip}\left(N_{1}\right) \times \operatorname{Bilip}\left(N_{2}\right)
$$

Bi-Lipschitz for the left-invariant Hamenstädt distance $\forall n, n^{\prime} \in N_{i}$:

$$
d_{\mathrm{Ham}}\left(n, n^{\prime}\right)=\exp \left(-\frac{1}{2} \lim _{s \rightarrow+\infty}\left(2 s-d_{S_{i}}\left((-s, n),\left(-s, n^{\prime}\right)\right)\right)\right)
$$

Admissible desintegrable measures

Let $\left(X, \mu^{X}\right)$ be a Gromov, Busemann measured metric space, μ^{X} is an admissible desintegrable measure if :

Admissible desintegrable measures

Let $\left(X, \mu^{X}\right)$ be a Gromov, Busemann measured metric space, μ^{X} is an admissible desintegrable measure if :
(a) $\forall z \in \mathbb{R}, \exists \mu_{z}^{X}$ measure on X_{z} such that $\forall U \subset X$:

$$
\mu^{X}(U)=\int_{z \in \mathbb{R}} \mu_{z}^{X}\left(U_{z}\right) \mathrm{d} z
$$

Where :

$$
\text { - } U_{z}=U \cap h^{-1}(z)
$$

Admissible desintegrable measures

Let $\left(X, \mu^{X}\right)$ be a Gromov, Busemann measured metric space, μ^{X} is an admissible desintegrable measure if :
(a) $\forall z \in \mathbb{R}, \exists \mu_{z}^{X}$ measure on X_{z} such that $\forall U \subset X$:

$$
\mu^{X}(U)=\int_{z \in \mathbb{R}} \mu_{z}^{X}\left(U_{z}\right) \mathrm{d} z
$$

(b) There exists $r>0$ such that $\forall a, b \in X, \mu_{h(a)}^{X}\left(B_{r}(a)\right) \asymp \mu_{h(b)}^{X}\left(B_{r}(b)\right)$

Where :

$$
U_{z}=U \cap h^{-1}(z)
$$

Admissible desintegrable measures

Let $\left(X, \mu^{X}\right)$ be a Gromov, Busemann measured metric space, μ^{X} is an admissible desintegrable measure if :
(a) $\forall z \in \mathbb{R}, \exists \mu_{z}^{X}$ measure on X_{z} such that $\forall U \subset X$:

$$
\mu^{X}(U)=\int_{z \in \mathbb{R}} \mu_{z}^{X}\left(U_{z}\right) \mathrm{d} z
$$

(b) There exists $r>0$ such that $\forall a, b \in X, \mu_{h(a)}^{X}\left(B_{r}(a)\right) \asymp \mu_{h(b)}^{X}\left(B_{r}(b)\right)$
(c) There exists $m>0$ such that $\forall z_{0} \in \mathbb{R}, \forall U \subset X_{z_{0}}$:

$$
\forall z \leq z_{0}, e^{m\left(z_{0}-z\right)} \mu_{z_{0}}^{X}(U) \asymp \mu_{z}^{X}\left(\pi_{z}(U)\right)
$$

Where :

- $U_{z}=U \cap h^{-1}(z)$
- $\pi_{z}(U)$ is the vertical projection of U on X_{z}.

Box-tiling of $X \bowtie Y$

Definition: Box $\mathcal{B}(x, R)$ in X.
Let $x \in X, R>0$ and $\mathcal{C}(x)$ a cell of nucleus x. $(\mathcal{C}(x) \sim$ rough horizontal disk centered at x)

$$
\mathcal{B}(x, R):=\bigcup_{z \in] h(x)-R ; h(x)]} \pi_{z}(\mathcal{C}(x))
$$

Box-tiling of $X \bowtie Y$

Definition: Box $\mathcal{B}(x, R)$ in X.
Let $x \in X, R>0$ and $\mathcal{C}(x)$ a cell of nucleus x. ($\mathcal{C}(x) \sim$ rough horizontal disk centered at x)

$$
\mathcal{B}(x, R):=\bigcup_{z \in] h(x)-R ; h(x)]} \pi_{z}(\mathcal{C}(x))
$$

Figure 15 - Box Tiling of X

Box-tiling of $X \bowtie Y$

Definition: Box $\mathcal{B}(x, R)$ in X.
Let $x \in X, R>0$ and $\mathcal{C}(x)$ a cell of nucleus x. $(\mathcal{C}(x) \sim$ rough horizontal disk centered at x)

$$
\mathcal{B}(x, R):=\bigcup_{z \in] h(x)-R ; h(x)]} \pi_{z}(\mathcal{C}(x))
$$

Figure 15 - Box Tiling of X

Figure 16 - Box in $X \bowtie Y$

Proof of Theorem C

Tile $X \bowtie Y$ with boxes $\mathcal{B}(R)$ of scale R.

$$
\Phi: X \bowtie Y \rightarrow X^{\prime} \bowtie Y^{\prime}, \text { quasi-isometry }
$$

Proof of Theorem C

Tile $X \bowtie Y$ with boxes $\mathcal{B}(R)$ of scale R.

$$
\Phi: X \bowtie Y \rightarrow X^{\prime} \bowtie Y^{\prime}, \text { quasi-isometry }
$$

1) Coarse differentiation $\Rightarrow \exists$ a suitable scale R such that $\Phi(\uparrow) \approx \uparrow$

Proof of Theorem C

Tile $X \bowtie Y$ with boxes $\mathcal{B}(R)$ of scale R.

$$
\Phi: X \bowtie Y \rightarrow X^{\prime} \bowtie Y^{\prime}, \text { quasi-isometry }
$$

1) Coarse differentiation $\Rightarrow \exists$ a suitable scale R such that $\Phi(\uparrow) \approx \uparrow$
2) Vertical quadrilaterals + good scale $R \Rightarrow$ On almost all boxes $\mathcal{B}(R)$ at scale $R: \Phi_{\mid \mathcal{B}} \approx\left(\Phi_{\mathcal{B}}^{X}, \Phi_{\mathcal{B}}^{Y}\right)$ or $\Phi_{\mid \mathcal{B}} \approx\left(\Phi_{\mathcal{B}}^{Y}, \Phi_{\mathcal{B}}^{X}\right)$

Figure 17 - Vertical quadrilateral

Proof of Theorem C

Tile $X \bowtie Y$ with boxes $\mathcal{B}(R)$ of scale R.

$$
\Phi: X \bowtie Y \rightarrow X^{\prime} \bowtie Y^{\prime}, \text { quasi-isometry }
$$

1) Coarse differentiation $\Rightarrow \exists$ a suitable scale R such that $\Phi(\uparrow) \approx \uparrow$
2) Vertical quadrilaterals + good scale $R \Rightarrow$ On almost all boxes $\mathcal{B}(R)$ at scale $R: \Phi_{\mid \mathcal{B}} \approx\left(\Phi_{\mathcal{B}}^{X}, \Phi_{\mathcal{B}}^{Y}\right)$ or $\Phi_{\mid \mathcal{B}} \approx\left(\Phi_{\mathcal{B}}^{Y}, \Phi_{\mathcal{B}}^{X}\right)$
3) $m \neq n \Rightarrow \exists L \gg R$ such that on all boxes at scale L, $\Phi_{\mid \mathcal{B}} \approx\left(\Phi_{\mathcal{B}}^{X}, \Phi_{\mathcal{B}}^{Y}\right)$

Figure 17 - Vertical quadrilateral

Proof of Theorem C

Tile $X \bowtie Y$ with boxes $\mathcal{B}(R)$ of scale R.

$$
\Phi: X \bowtie Y \rightarrow X^{\prime} \bowtie Y^{\prime}, \text { quasi-isometry }
$$

1) Coarse differentiation $\Rightarrow \exists$ a suitable scale R such that $\Phi(\uparrow) \approx \uparrow$
2) Vertical quadrilaterals + good scale $R \Rightarrow$ On almost all boxes $\mathcal{B}(R)$ at scale $R: \Phi_{\mid \mathcal{B}} \approx\left(\Phi_{\mathcal{B}}^{X}, \Phi_{\mathcal{B}}^{Y}\right)$ or $\Phi_{\mid \mathcal{B}} \approx\left(\Phi_{\mathcal{B}}^{Y}, \Phi_{\mathcal{B}}^{X}\right)$
3) $m \neq n \Rightarrow \exists L \gg R$ such that on all boxes at scale L, $\Phi_{\mid \mathcal{B}} \approx\left(\Phi_{\mathcal{B}}^{X}, \Phi_{\mathcal{B}}^{Y}\right)$
4) Given two points sharing their height, Φ send them almost on the same height $\Rightarrow \Phi \approx\left(\Phi^{X}, \Phi^{Y}\right)$

Figure 17 - Vertical quadrilateral

Theorem C \Rightarrow Theorem D

We have: $\left(\mathbb{R} \ltimes_{A_{1}} N_{1}\right) \bowtie\left(\mathbb{R} \ltimes_{A_{2}} N_{2}\right)=\mathbb{R} \ltimes_{\operatorname{Diag}\left(A_{1},-A_{2}\right)}\left(N_{1} \times N_{2}\right)$
We want : $\mathrm{QI}\left(\mathbb{R} \ltimes_{\operatorname{Diag}\left(A_{1},-A_{2}\right)}\left(N_{1} \times N_{2}\right)\right)=\operatorname{Bilip}\left(N_{1}\right) \times \operatorname{Bilip}\left(N_{2}\right)$

Theorem C \Rightarrow Theorem D

We have: $\left(\mathbb{R} \ltimes_{A_{1}} N_{1}\right) \bowtie\left(\mathbb{R} \ltimes_{A_{2}} N_{2}\right)=\mathbb{R} \ltimes_{\operatorname{Diag}\left(A_{1},-A_{2}\right)}\left(N_{1} \times N_{2}\right)$
We want : $\mathrm{QI}\left(\mathbb{R} \ltimes_{\operatorname{Diag}\left(A_{1},-A_{2}\right)}\left(N_{1} \times N_{2}\right)\right)=\operatorname{Bilip}\left(N_{1}\right) \times \operatorname{Bilip}\left(N_{2}\right)$

1) Theorem $C \Rightarrow \exists \Phi_{i}$ q.i of $\mathbb{R} \ltimes_{A_{i}} N_{i}$ such that $\Phi \approx\left(\Phi_{1}, \Phi_{2}\right)$.

Theorem C \Rightarrow Theorem D

We have: $\left(\mathbb{R} \ltimes_{A_{1}} N_{1}\right) \bowtie\left(\mathbb{R} \ltimes_{A_{2}} N_{2}\right)=\mathbb{R} \ltimes_{\operatorname{Diag}\left(A_{1},-A_{2}\right)}\left(N_{1} \times N_{2}\right)$
We want : $\mathrm{QI}\left(\mathbb{R} \ltimes_{\operatorname{Diag}\left(A_{1},-A_{2}\right)}\left(N_{1} \times N_{2}\right)\right)=\operatorname{Bilip}\left(N_{1}\right) \times \operatorname{Bilip}\left(N_{2}\right)$

1) Theorem $C \Rightarrow \exists \Phi_{i}$ q.i of $\mathbb{R} \ltimes_{A_{i}} N_{i}$ such that $\Phi \approx\left(\Phi_{1}, \Phi_{2}\right)$.
2) Φ_{1} height respecting $\Rightarrow \exists \Psi_{1}: N_{1} \rightarrow N_{1}$ such that $\Phi_{1} \approx\left(\mathrm{id}_{\mathbb{R}}, \Psi_{1}\right)$

Theorem C \Rightarrow Theorem D

We have: $\left(\mathbb{R} \ltimes_{A_{1}} N_{1}\right) \bowtie\left(\mathbb{R} \ltimes_{A_{2}} N_{2}\right)=\mathbb{R} \ltimes_{\operatorname{Diag}\left(A_{1},-A_{2}\right)}\left(N_{1} \times N_{2}\right)$
We want : $\mathrm{QI}\left(\mathbb{R} \ltimes_{\operatorname{Diag}\left(A_{1},-A_{2}\right)}\left(N_{1} \times N_{2}\right)\right)=\operatorname{Bilip}\left(N_{1}\right) \times \operatorname{Bilip}\left(N_{2}\right)$

1) Theorem $C \Rightarrow \exists \Phi_{i}$ q.i of $\mathbb{R} \ltimes_{A_{i}} N_{i}$ such that $\Phi \approx\left(\Phi_{1}, \Phi_{2}\right)$.
2) Φ_{1} height respecting $\Rightarrow \exists \Psi_{1}: N_{1} \rightarrow N_{1}$ such that $\Phi_{1} \approx\left(\mathrm{id}_{\mathbb{R}}, \Psi_{1}\right)$
3) Show that $\Psi_{1} \in \operatorname{Bilip}\left(N_{1}, d_{\text {Ham }}\right)$.

Theorem C \Rightarrow Theorem D

We have : $\left(\mathbb{R} \ltimes_{A_{1}} N_{1}\right) \bowtie\left(\mathbb{R} \ltimes_{A_{2}} N_{2}\right)=\mathbb{R} \ltimes_{\operatorname{Diag}\left(A_{1},-A_{2}\right)}\left(N_{1} \times N_{2}\right)$
We want : $\mathrm{QI}\left(\mathbb{R} \ltimes_{\operatorname{Diag}\left(A_{1},-A_{2}\right)}\left(N_{1} \times N_{2}\right)\right)=\operatorname{Bilip}\left(N_{1}\right) \times \operatorname{Bilip}\left(N_{2}\right)$

1) Theorem $C \Rightarrow \exists \Phi_{i}$ q.i of $\mathbb{R} \ltimes_{A_{i}} N_{i}$ such that $\Phi \approx\left(\Phi_{1}, \Phi_{2}\right)$.
2) Φ_{1} height respecting $\Rightarrow \exists \Psi_{1}: N_{1} \rightarrow N_{1}$ such that $\Phi_{1} \approx\left(\mathrm{id}_{\mathbb{R}}, \Psi_{1}\right)$
3) Show that $\Psi_{1} \in \operatorname{Bilip}\left(N_{1}, d_{\text {Ham }}\right)$.
4) $\Phi \approx\left(\mathrm{id}_{\mathbb{R}}, \Psi_{1}, \Psi_{2}\right) \quad(\Rightarrow(1, c)-\mathrm{QI})$

Perspectives

- Q.I. classification of $\mathbb{R} \ltimes\left(N_{1} \times N_{2}\right)$.

Perspectives

- Q.I. classification of $\mathbb{R} \ltimes\left(N_{1} \times N_{2}\right)$.
- Use Irene Peng's methods to achieve similar results for the solvable Lie groups $\mathbb{R}^{p} \ltimes\left(N_{1} \times N_{2}\right)$

Perspectives

- Q.I. classification of $\mathbb{R} \ltimes\left(N_{1} \times N_{2}\right)$.
- Use Irene Peng's methods to achieve similar results for the solvable Lie groups $\mathbb{R}^{p} \ltimes\left(N_{1} \times N_{2}\right)$
- Remove some assumptions : $m \neq n$; (Busemann)

Perspectives

- Q.I. classification of $\mathbb{R} \ltimes\left(N_{1} \times N_{2}\right)$.
- Use Irene Peng's methods to achieve similar results for the solvable Lie groups $\mathbb{R}^{p} \ltimes\left(N_{1} \times N_{2}\right)$
- Remove some assumptions: $m \neq n$; (Busemann)
- What about $X_{1} \bowtie X_{2} \bowtie \ldots \bowtie X_{n}$?

The End

Thank you for your attention.

