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Figure 2 — Horospherical product X 1Y’

Study the geometry of X VY :

e Shapes and lengths of geodesics
e Description of the visual boundary

e Geometric rigidity of quasi-isometries
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Gromov program for classification of groups

Classifying groups up to quasi-isometry.

QI rigid classes :

e Free Abelian groups (M Gromov ; P.Pansu)
e Nilpotent groups, hyperbolic Groups (M.Gromov)

Non QI rigid class :

e Solvable groups (A.Erschler)
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Classification of solvable groups

Theorem (Farb-Mosher, 1999)
Classification up to quasi-isometry of Baumslag-Solitar groups BS(1, n).

Theorem (Eskin-Fisher-Whyte, 2012)
Classification up to quasi-isometry of Diestel-Leader graphs DL(p, q) and

of solvable Lie groups Sol(p, q).

Theorem (Eskin-Fisher-Whyte, 2012)
There exists a regular graph which possess an isometry group acting

transitively on it which is not quasi-isometric to any Cayley graph.
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Let (X, dx) geodesic, locally compact, d-hyperbolic space.
+ Busemann space (The distance between two geodesics is convex) .
Examples :

¢ CAT(-1) = RxaN = H"

o Trees

T
R?; ds? = e %dx? + dz?

Figure 3 — Log model of the hyperbolic

Figure 4 — Tree

plane
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Height functions and vertical geodesics

Definitions
Let zp € X and fix a € 0,,X. Let k € a, the height function hx on X

with respect to a is :

Vo € X, hx(z) = —Ba(z) = sup (dx(z,k(t))—t)

t—+4oo

A geodesic is called vertical if one of its ends is in a.

N Az aT @{i

[ T A T
Figure 5 — Log model of H? : =
h(z,z) =z

Figure 6 — Vertical geodesics of H?
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Definition (Horospherical product)
Let X and Y be two J-hyperbolic spaces. Let hx and hy be their

respective height functions. The horospherical product X <Y is :
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Definition and Examples

Definition (Horospherical product)
Let X and Y be two J-hyperbolic spaces. Let hx and hy be their

respective height functions. The horospherical product X <Y is :

XY = {(:L',y) e X xY | hx(z) = fhy(y)} (— U x. x YZ>

z€R

A
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Distance on X x Y

Definition (dxyv)
The distance dxsqy is the length path metric induced by N(dx,dy) on

X x Y, with N an admissible norm of RZ2.



Distance on X x Y

Definition (dxyv)
The distance dxsqy is the length path metric induced by N(dx,dy) on

X x Y, with N an admissible norm of RZ2.

Additional assumption on X and Y :
Geodesically complete (geodesics are infinitely extendable)
= X Y is connected



Distance on X x Y

Definition (dxyv)
The distance dxsqy is the length path metric induced by N(dx,dy) on

X x Y, with N an admissible norm of RZ2.

Additional assumption on X and Y :
Geodesically complete (geodesics are infinitely extendable)
= X Y is connected

Theorem A (F, 2020)
There exists C' (0, N) > 0 such that :

dxsy =dx +dy — A+ C



Sketch of proof for Theorem A

Figure 9 — Sketch
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Sketch of proof for Theorem A
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Length of geodesic projections

Proposition
Let X be a §-hyperbolic space and let ¢ be a path of X. If [p,¢] is a

geodesic segment linking the endpoints of ¢, then for all = € [p, ¢] we
have
dx(z,im(c)) < & [logy 1(c)| + 1

If h(c) < h*([p,q]) — AH, Then :

I(c) > dx(p,q) +2°H

Figure 10 — A not high enough path
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Distance description

Let p1 = (z1,41) and ps = (22,y2) be two points of X 1Y and let
¢ be a path of X Y linking p1 to po. Then

lex) +l(ey)
2
> dx (1, 22) + dy (y1,y2) — [h(p1) — h(p2)| + 2°Hx 4 28Hy

l(c)

vV
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Distance description

Let p1 = (z1,41) and ps = (22,y2) be two points of X 1Y and let
¢ be a path of X Y linking p1 to po. Then

lex) +l(ey)
2

> dx (1, 22) + dy (y1,y2) — [h(p1) — h(p2)| + 2°Hx 4 28Hy

l(c)

vV

Theorem A (dxpy)
There exists C'(d, N) such that

dxwy =dx +dy —Ah £ C

Corollary
(X >aY,dy,) and (X 1Y, dy,) are (1,C)-quasi-isometric.
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Geodesic segments

Corollary
A geodesic segment « is close to the union of three vertical geodesics.
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Geodesic segments

Corollary
A geodesic segment « is close to the union of three vertical geodesics.

Figure 11 — Geodesic segment of X <Y
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Geodesic lines of X Y

Theorem B ﬁF, 2020)
Any geodesic line a of X 1Y verifies at least one of the two following

statements :

1. ais close to a X-type geodesic.
2. «is close to a Y-type geodesic.
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Geodesic lines of X Y

Theorem B ﬁF, 2020)
Any geodesic line a of X 1Y verifies at least one of the two following

statements :

1. ais close to a X-type geodesic.
2. «is close to a Y-type geodesic.

haA

«[

\

X — type

Figure 12 — Geodesic line types
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Visual boundary of X Y
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Let ax € 0X et ay € 9Y. The visual boundary of X Y is :

(X Y) = ((ax \ {ax}) x {ay}) U ({ax} x (8Y\{ay}))
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Corollary
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Visual boundary of X Y

Corollary
Let ax € 0X et ay € 9Y. The visual boundary of X Y is :

(X Y) = ((ax \ {ax}) x {ay}) U ({ax} x (8Y\{ay}))

{ax} x (Y \ {ar})

....................

X ,/ '%ax \ {ax}) x {ay}

Figure 13 — Visual boundary of X <Y

Example : 8(R XDiag(A;,—Asz) (Nl X NQ)) = N1 X Ny 15



Proof of Theorems B

hA

Figure 14 — Geodesic segment

e Two behaviours for geodesic segments : "\ " or \ "\..
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Proof of Theorems B

hA

Figure 14 — Geodesic segment

Two behaviours for geodesic segments : 7\ 7 or \"\..

Geodesic rays of X Y only change once of monotonicity.

So do bi-infinite geodesics = Theoreme B

Geodesic ray classification = Characterisation of the visual boundary
of X Y

16
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Geometric rigidity

Assume :

- X, Y, X’ and Y’ are endowed with admissible disintegrable
measures.

- X and Y (resp. X’ and Y”) do not share the same exponential
growth parameter m > n (resp. m’ > n').
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Geometric rigidity

Assume :

- X, Y, X’ and Y’ are endowed with admissible disintegrable
measures.

- X and Y (resp. X’ and Y”) do not share the same exponential
growth parameter m > n (resp. m’ > n').

Theorem C : Geometric rigidity (F, 2022)
Let @: X Y — X' Y’ be a (k, ¢)-quasi-isometry. There exist

C(k,c,<) €R, ®X : X — X" and ®Y : Y — Y’ two quasi-isometries
such that :
e (@, (@, @Y)) < C

17



Geometric rigidity consequences

Theorem D (F, 2022)
Let S; =R x4, N7 and Sy = R x4, Ny be two simply connected,

negatively curved Lie groups (Heintze groups) such that
tr(Ay) # tr(As), then :

QI (R [XDiag(Al,—Ag) (Nl X Ng)) = Blllp(Nl) X Blllp(NQ)
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Geometric rigidity consequences

Theorem D (F, 2022)
Let S; =R x4, N7 and Sy = R x4, Ny be two simply connected,

negatively curved Lie groups (Heintze groups) such that
tr(Ay) # tr(As), then :

QI (R [XDiag(Al,—Ag) (Nl X Ng)) = Blllp(Nl) X Blllp(NQ)
Bi-Lipschitz for the left-invariant Hamenstadt distance Vn,n’ € N; :

diam(n,n') = exp (—; lim (25 —ds, ((—s,n), (—s,n’))))

s—+oo
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Admissible desintegrable measures

Let (X, ™) be a Gromov, Busemann measured metric space, u* is
an admissible desintegrable measure if :
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Admissible desintegrable measures

Let (X, ™) be a Gromov, Busemann measured metric space, u* is
an admissible desintegrable measure if :

(a) Vz € R, Iuf measure on X, such that VU C X :
WO = [ U
z€R
(b) There exists r > 0 such that Va,b € X, p,)f(a)(BT(a)) = uff(b)(BT(b))
(c) There exists m > 0 such that Vzo € R, VU C X, :
V2 < 20, €0 X (U) = i (. (U))

Where :
U, =Unh Y2)
- 7. (U) is the vertical projection of U on X .
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Box-tiling of X Y

Definition : Box B(z, R) in X.
Let 2 € X, R > 0 and C(x) a cell of nucleus x. (C(z) ~ rough horizontal

disk centered at x)

B(z,R) := U 7 (C(x))

z€)h(z)— R;h(x)]
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Box-tiling of X Y

Definition : Box B(z, R) in X.
Let 2 € X, R > 0 and C(x) a cell of nucleus x. (C(z) ~ rough horizontal

disk centered at x)

B(z,R) := U 7 (C(x))

z€)h(z)— R;h(x)]

nRk s T O S orpe
(n— )R- —=~ BX

Figure 15 — Box Tiling of X Figure 16 — Box in X Y’
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Proof of Theorem C

Tile X > Y with boxes B(R) of scale R.

®: X xY — X' 'Y, quasi-isometry
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Proof of Theorem C

Tile X > Y with boxes B(R) of scale R.
®: X xY — X' 'Y, quasi-isometry

1) Coarse differentiation = 3 a suitable scale R such that ®(1) ~1

2) Vertical quadrilaterals + good scale R = On almost all boxes
B(R) at scale R : @5 ~ (Pg,P)) or D5 ~ (PF, P3)

3) m #n = 3L >> R such that on all boxes at scale L,
o5~ (O3, Pp)

4) Given two points sharing their height, ® send them almost on the
same height = @ ~ (®X, ®Y)

h

Figure 17 — Vertical quadrilateral 21



Theorem C = Theorem D

We have : (R XA, Nl) > (R X Aq Ng) =R lXDiag(Al,—Ag) (N1 X NQ)
We want : QI (R MDiag(Al,ng) (N1 X Ng)) = Blllp(Nl) X Blllp(NQ)
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Theorem C = Theorem D

We have : (R XA, Nl) > (R X Aq Ng) =R lXDiag(Al,—Ag) (N1 X NQ)
We want : QI (R MDiag(Al,ng) (N1 X Ng)) = Blllp(Nl) X Blllp(NQ)

1) Theorem C = 3 ®; q.i of R x4, N; such that ® ~ (&1, ®5).

2) @, height respecting = 3¥; : Ny — N; such that ®; = (idg, V1)
3) Show that ¥y € Bilip(Ny, diam)-

4) ¢ =~ (idg, ¥y, ¥s) ( = (1, c)—QI)
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e Q.l classification of R x (N7 x Na).

23



XY

e Q.l classification of R x (N7 x Na).

e Use Irene Peng's methods to achieve similar results for the solvable
Lie groups R? x (N7 x Na)

23



XY

Q.. classification of R x (N7 x Na).

Use Irene Peng's methods to achieve similar results for the solvable
Lie groups R? x (N7 x Na)

Remove some assumptions : m # n; (Busemann)

23



XY

Q.1. classification of R x (N7 x Na).

e Use Irene Peng's methods to achieve similar results for the solvable
Lie groups R? x (N7 x Na)

Remove some assumptions : m # n; (Busemann)

What about X xa Xy < ... X, ?
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The End

Thank you for your attention.
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