Geometry and quasi-isometry rigidity of horospherical products

Tom Ferragut

Differential Topology Seminar of Kyoto University

Figure 1 – Log model of the hyperbolic plane

Figure 1 - Log model of the hyperbolic plane

Figure 1 – Log model of the hyperbolic plane

Figure 1 – Log model of the hyperbolic plane

Figure 1 – Log model of the hyperbolic plane

Geometry of horospherical products

Figure 2 – Horospherical product $X \bowtie Y$

Geometry of horospherical products

Figure 2 – Horospherical product $X \bowtie Y$

Study the geometry of $X \bowtie Y$:

- Shapes and lengths of geodesics
- Description of the visual boundary
- Geometric rigidity of quasi-isometries

- 1. Gromov hyperbolic and Busemann spaces
- 2. Horospherical products and their geodesics
- 3. Geometric rigidity of quasi-isometries

Ql rigid classes :

QI rigid classes :

• Free Abelian groups (M Gromov; P.Pansu)

Ql rigid classes :

- Free Abelian groups (M Gromov; P.Pansu)
- Nilpotent groups, hyperbolic Groups (M.Gromov)

Ql rigid classes :

- Free Abelian groups (M Gromov; P.Pansu)
- Nilpotent groups, hyperbolic Groups (M.Gromov)

Non QI rigid class :

Ql rigid classes :

- Free Abelian groups (M Gromov; P.Pansu)
- Nilpotent groups, hyperbolic Groups (M.Gromov)

Non QI rigid class :

• Solvable groups (A.Erschler)

Classification of solvable groups

Theorem (Farb-Mosher, 1999)

Classification up to quasi-isometry of Baumslag-Solitar groups $\mathrm{BS}(1,n).$

Theorem (Farb-Mosher, 1999)

Classification up to quasi-isometry of Baumslag-Solitar groups $\mathrm{BS}(1,n)$.

Theorem (Eskin-Fisher-Whyte, 2012)

Classification up to quasi-isometry of Diestel-Leader graphs DL(p,q) and of solvable Lie groups ${\rm Sol}(p,q).$

Theorem (Farb-Mosher, 1999)

Classification up to quasi-isometry of Baumslag-Solitar groups $\mathrm{BS}(1,n)$.

Theorem (Eskin-Fisher-Whyte, 2012)

Classification up to quasi-isometry of Diestel-Leader graphs DL(p,q) and of solvable Lie groups ${\rm Sol}(p,q).$

Theorem (Eskin-Fisher-Whyte, 2012)

There exists a regular graph which possess an isometry group acting transitively on it which is not quasi-isometric to any Cayley graph.

Gromov hyperbolic and Busemann spaces

Let (X, d_X) geodesic, locally compact, δ -hyperbolic space.

Let (X, d_X) geodesic, locally compact, δ -hyperbolic space. + Busemann space (The distance between two geodesics is convex).

Let (X, d_X) geodesic, locally compact, δ -hyperbolic space. + Busemann space (The distance between two geodesics is convex). Examples :

Let (X,d_X) geodesic, locally compact, δ -hyperbolic space. + Busemann space (The distance between two geodesics is convex) . **Examples :**

• CAT(-1)

Let (X, d_X) geodesic, locally compact, δ -hyperbolic space. + Busemann space (The distance between two geodesics is convex). Examples :

• $\operatorname{CAT}(-1) \Rightarrow \mathbb{R} \ltimes_A N$

Let (X, d_X) geodesic, locally compact, δ -hyperbolic space. + Busemann space (The distance between two geodesics is convex). Examples :

• $\operatorname{CAT}(-1) \Rightarrow \mathbb{R} \ltimes_A N \Rightarrow \mathbb{H}^n$

Figure 3 – Log model of the hyperbolic plane

Let (X, d_X) geodesic, locally compact, δ -hyperbolic space. + Busemann space (The distance between two geodesics is convex). Examples :

- $\operatorname{CAT}(-1) \Rightarrow \mathbb{R} \ltimes_A N \Rightarrow \mathbb{H}^n$
- Trees

Figure 3 – Log model of the hyperbolic plane

Figure 4 - Tree

Definitions

Let $x_0 \in X$ and fix $a \in \partial_{x_0} X$. Let $k \in a$, the **height function** h_X on X with respect to a is :

$$\forall x \in X, \ h_X(x) = -\beta_a(x) = \sup_{t \to +\infty} \left(d_X(x, k(t)) - t \right)$$

Definitions

Let $x_0 \in X$ and fix $a \in \partial_{x_0} X$. Let $k \in a$, the **height function** h_X on X with respect to a is :

$$\forall x \in X, \ h_X(x) = -\beta_a(x) = \sup_{t \to +\infty} \left(d_X(x, k(t)) - t \right)$$

Figure 5 – Log model of \mathbb{H}^2 : h(x,z) = z

Definitions

Let $x_0 \in X$ and fix $a \in \partial_{x_0} X$. Let $k \in a$, the **height function** h_X on X with respect to a is :

$$\forall x \in X, \ h_X(x) = -\beta_a(x) = \sup_{t \to +\infty} \left(d_X(x, k(t)) - t \right)$$

A geodesic is called **vertical** if one of its ends is in a.

Figure 5 – Log model of \mathbb{H}^2 : h(x,z) = z

Definitions

Let $x_0 \in X$ and fix $a \in \partial_{x_0} X$. Let $k \in a$, the **height function** h_X on X with respect to a is :

$$\forall x \in X, \ h_X(x) = -\beta_a(x) = \sup_{t \to +\infty} \left(d_X(x, k(t)) - t \right)$$

A geodesic is called **vertical** if one of its ends is in a.

Figure 5 – Log model of \mathbb{H}^2 : h(x,z) = z

Figure 6 – Vertical geodesics of \mathbb{H}^2

Horospherical products and their geodesics

Definition and Examples

Definition (Horospherical product) Let X and Y be two δ -hyperbolic spaces. Let h_X and h_Y be their respective height functions. The **horospherical product** $X \bowtie Y$ is :

$$X \bowtie Y := \left\{ (x, y) \in X \times Y \mid h_X(x) = -h_Y(y) \right\} \left(= \bigcup_{z \in \mathbb{R}} X_z \times Y_{-z} \right)$$
Definition and Examples

Definition (Horospherical product)

Let X and \dot{Y} be two δ -hyperbolic spaces. Let h_X and h_Y be their respective height functions. The **horospherical product** $X \bowtie Y$ is :

$$X \bowtie Y := \left\{ (x, y) \in X \times Y \mid h_X(x) = -h_Y(y) \right\} \left(= \bigcup_{z \in \mathbb{R}} X_z \times Y_{-z} \right)$$

Figure 7 – $\mathbb{H}^2 \bowtie \mathbb{H}^2 = Sol$

Figure 8 – $T_3 \bowtie T_3 = \operatorname{Cay}(\mathbb{Z}_2 \wr \mathbb{Z})$

Definition $(d_{X \bowtie Y})$ The distance $d_{X \bowtie Y}$ is the length path metric induced by $N(d_X, d_Y)$ on $X \times Y$, with N an *admissible* norm of \mathbb{R}^2 . **Definition** $(d_{X \bowtie Y})$ The distance $d_{X \bowtie Y}$ is the length path metric induced by $N(d_X, d_Y)$ on $X \times Y$, with N an *admissible* norm of \mathbb{R}^2 .

Additional assumption on X and Y:

Geodesically complete (geodesics are infinitely extendable) $\Rightarrow X \bowtie Y$ is connected **Definition** $(d_{X \bowtie Y})$ The distance $d_{X \bowtie Y}$ is the length path metric induced by $N(d_X, d_Y)$ on $X \times Y$, with N an *admissible* norm of \mathbb{R}^2 .

Additional assumption on X and Y:

Geodesically complete (geodesics are infinitely extendable) $\Rightarrow X \bowtie Y$ is connected

Theorem A (F, 2020) There exists $C(\delta, N) \ge 0$ such that :

$$d_{X\bowtie Y} = d_X + d_Y - \Delta h \pm C$$

Sketch of proof for Theorem A

Figure 9 - Sketch

Sketch of proof for Theorem A

Figure 9 - Sketch

Length of geodesic projections

Proposition

Let X be a δ -hyperbolic space and let c be a path of X. If [p,q] is a geodesic segment linking the endpoints of c, then for all $x \in [p,q]$ we have

 $d_X(x, \operatorname{im}(\mathbf{c})) \le \delta \left| \log_2 \mathbf{l}(\mathbf{c}) \right| + 1$

If $h^+(c) \leq h^+\bigl([p,q]\bigr) - \Delta H$, Then :

 $l(c) \ge d_X(p,q) + 2^{\Delta H}$

Figure 10 - A not high enough path

Distance description

Let $p_1 = (x_1, y_1)$ and $p_2 = (x_2, y_2)$ be two points of $X \bowtie Y$ and let c be a path of $X \bowtie Y$ linking p_1 to p_2 . Then

$$l(c) \ge \frac{l(c_X) + l(c_Y)}{2}$$

$$\ge d_X(x_1, x_2) + d_Y(y_1, y_2) - |h(p_1) - h(p_2)| + 2^{\Delta H_X} + 2^{\Delta H_Y}$$

Distance description

Let $p_1 = (x_1, y_1)$ and $p_2 = (x_2, y_2)$ be two points of $X \bowtie Y$ and let c be a path of $X \bowtie Y$ linking p_1 to p_2 . Then

$$l(c) \ge \frac{l(c_X) + l(c_Y)}{2}$$

$$\ge d_X(x_1, x_2) + d_Y(y_1, y_2) - |h(p_1) - h(p_2)| + 2^{\Delta H_X} + 2^{\Delta H_Y}$$

Theorem A $(d_{X\bowtie Y})$ There exists $C(\delta, N)$ such that

$$d_{X\bowtie Y} = d_X + d_Y - \Delta h \pm C$$

Corollary $(X \bowtie Y, d_{l_1})$ and $(X \bowtie Y, d_{l_2})$ are (1, C)-quasi-isometric.

Corollary

A geodesic segment α is close to the union of three vertical geodesics.

Corollary

A geodesic segment α is close to the union of three vertical geodesics.

Figure 11 – Geodesic segment of $X \bowtie Y$

Geodesic lines of $X \bowtie Y$

Theorem B (F, 2020) Any geodesic line α of $X \bowtie Y$ verifies at least one of the two following statements :

- 1. α is close to a X-type geodesic.
- 2. α is close to a Y-type geodesic.

Theorem B (F, 2020)

Any geodesic line α of $X\bowtie Y$ verifies at least one of the two following statements :

- 1. α is close to a X-type geodesic.
- 2. α is close to a Y-type geodesic.

Figure 12 - Geodesic line types

Visual boundary of $X \bowtie Y$

Corollary

Let $a_X \in \partial X$ et $a_Y \in \partial Y$. The visual boundary of $X \bowtie Y$ is :

$$\partial(X \bowtie Y) = \left(\left(\partial X \setminus \{a_X\} \right) \times \{a_Y\} \right) \bigcup \left(\{a_X\} \times \left(\partial Y \setminus \{a_Y\} \right) \right)$$

Visual boundary of $X \bowtie Y$

Corollary

Let $a_X \in \partial X$ et $a_Y \in \partial Y$. The visual boundary of $X \bowtie Y$ is :

 $\partial(X \bowtie Y) = \left(\left(\partial X \setminus \{a_X\} \right) \times \{a_Y\} \right) \bigcup \left(\{a_X\} \times \left(\partial Y \setminus \{a_Y\} \right) \right)$

Figure 13 – Visual boundary of $X \bowtie Y$

Visual boundary of $X \bowtie Y$

Corollary

Let $a_X \in \partial X$ et $a_Y \in \partial Y$. The visual boundary of $X \bowtie Y$ is :

 $\partial(X \bowtie Y) = \left(\left(\partial X \setminus \{a_X\} \right) \times \{a_Y\} \right) \bigcup \left(\{a_X\} \times \left(\partial Y \setminus \{a_Y\} \right) \right)$

Figure 13 – Visual boundary of $X \bowtie Y$

Example : $\partial (\mathbb{R} \ltimes_{\text{Diag}(A_1, -A_2)} (N_1 \times N_2)) = N_1 \times N_2$

• Two behaviours for geodesic segments : \nearrow or \checkmark \nearrow .

- Two behaviours for geodesic segments : $\nearrow \checkmark \checkmark$ or $\checkmark \nearrow \checkmark$.
- Geodesic rays of $X \bowtie Y$ only change once of monotonicity.

Figure 14 - Geodesic segment

- Two behaviours for geodesic segments : $\nearrow \checkmark \checkmark$ or $\checkmark \nearrow \checkmark \checkmark$.
- Geodesic rays of $X \bowtie Y$ only change once of monotonicity.
- So do bi-infinite geodesics \Rightarrow Theoreme B

Figure 14 - Geodesic segment

- Two behaviours for geodesic segments : $\nearrow \searrow \nearrow$ or $\searrow \nearrow \searrow$.
- Geodesic rays of $X \bowtie Y$ only change once of monotonicity.
- So do bi-infinite geodesics \Rightarrow Theoreme B
- Geodesic ray classification \Rightarrow Characterisation of the visual boundary of $X\bowtie Y$

Geometric rigidity of quasi-isometries

Assume :

- $\cdot \, X, \, Y, \, X'$ and Y' are endowed with admissible disintegrable measures.
- X and Y (resp. X' and Y') do not share the same exponential growth parameter m > n (resp. m' > n').

Assume :

- $\cdot \, X, \, Y, \, X'$ and Y' are endowed with admissible disintegrable measures.
- X and Y (resp. X' and Y') do not share the same exponential growth parameter m > n (resp. m' > n').

Theorem C: Geometric rigidity (F, 2022) Let $\Phi: X \bowtie Y \to X' \bowtie Y'$ be a (k, c)-quasi-isometry. There exist $C(k, c, \bowtie) \in \mathbb{R}, \ \Phi^X: X \to X'$ and $\Phi^Y: Y \to Y'$ two quasi-isometries such that :

$$d_{\bowtie}\left(\Phi, (\Phi^X, \Phi^Y)\right) \le C$$

Theorem D (F, 2022) Let $S_1 = \mathbb{R} \ltimes_{A_1} N_1$ and $S_2 = \mathbb{R} \ltimes_{A_2} N_2$ be two simply connected, negatively curved Lie groups (Heintze groups) such that $\operatorname{tr}(A_1) \neq \operatorname{tr}(A_2)$, then :

 $QI\left(\mathbb{R} \ltimes_{\text{Diag}(A_1, -A_2)} (N_1 \times N_2)\right) = \text{Bilip}(N_1) \times \text{Bilip}(N_2)$

Theorem D (F, 2022) Let $S_1 = \mathbb{R} \ltimes_{A_1} N_1$ and $S_2 = \mathbb{R} \ltimes_{A_2} N_2$ be two simply connected, negatively curved Lie groups (Heintze groups) such that $\operatorname{tr}(A_1) \neq \operatorname{tr}(A_2)$, then :

$$\operatorname{QI}\left(\mathbb{R}\ltimes_{\operatorname{Diag}(A_1,-A_2)}(N_1\times N_2)\right) = \operatorname{Bilip}(N_1)\times \operatorname{Bilip}(N_2)$$

Bi-Lipschitz for the left-invariant Hamenstädt distance $orall n, n' \in N_i$:

$$d_{\operatorname{Ham}}(n,n') = \exp\left(-\frac{1}{2}\lim_{s \to +\infty} \left(2s - d_{S_i}\left((-s,n), (-s,n')\right)\right)\right)$$

(a) $\forall z \in \mathbb{R}, \exists \mu_z^X$ measure on X_z such that $\forall U \subset X$:

$$\mu^X(U) = \int_{z \in \mathbb{R}} \mu_z^X(U_z) \mathrm{d}z$$

Where :

$$\cdot \ U_z = U \cap h^{-1}(z)$$

(a) $\forall z \in \mathbb{R}, \ \exists \mu_z^X$ measure on X_z such that $\forall U \subset X$:

$$\mu^X(U) = \int_{z \in \mathbb{R}} \mu_z^X(U_z) \mathrm{d}z$$

(b) There exists r > 0 such that $\forall a, b \in X$, $\mu_{h(a)}^X(B_r(a)) \asymp \mu_{h(b)}^X(B_r(b))$

Where :

$$\cdot \ U_z = U \cap h^{-1}(z)$$

(a) $\forall z \in \mathbb{R}, \ \exists \mu_z^X$ measure on X_z such that $\forall U \subset X$:

$$\mu^X(U) = \int_{z \in \mathbb{R}} \mu_z^X(U_z) \mathrm{d}z$$

(b) There exists r > 0 such that $\forall a, b \in X$, $\mu_{h(a)}^X(B_r(a)) \asymp \mu_{h(b)}^X(B_r(b))$ (c) There exists m > 0 such that $\forall z_0 \in \mathbb{R}$, $\forall U \subset X_{z_0}$:

$$\forall z \le z_0, \ e^{m(z_0-z)} \mu_{z_0}^X(U) \asymp \mu_z^X(\pi_z(U))$$

Where :

- $\cdot \ U_z = U \cap h^{-1}(z)$
- $\cdot \pi_z(U)$ is the *vertical* projection of U on X_z .

Definition : Box $\mathcal{B}(x, R)$ in X. Let $x \in X$, R > 0 and $\mathcal{C}(x)$ a cell of nucleus x. ($\mathcal{C}(x) \sim$ rough horizontal disk centered at x)

$$\mathcal{B}(x,R) := \bigcup_{z \in [h(x)-R;h(x)]} \pi_z(\mathcal{C}(x))$$

Definition : Box $\mathcal{B}(x, R)$ in X. Let $x \in X$, R > 0 and $\mathcal{C}(x)$ a cell of nucleus x. ($\mathcal{C}(x) \sim$ rough horizontal disk centered at x)

$$\mathcal{B}(x,R) := \bigcup_{z \in]h(x) - R; h(x)]} \pi_z(\mathcal{C}(x))$$

Figure 15 – Box Tiling of X

Definition : Box $\mathcal{B}(x, R)$ in X. Let $x \in X$, R > 0 and $\mathcal{C}(x)$ a cell of nucleus x. ($\mathcal{C}(x) \sim$ rough horizontal disk centered at x)

$$\mathcal{B}(x,R) := \bigcup_{z \in]h(x) - R; h(x)]} \pi_z(\mathcal{C}(x))$$

Figure 15 - Box Tiling of X

Figure 16 – Box in $X \bowtie Y$

Tile $X \bowtie Y$ with boxes $\mathcal{B}(R)$ of scale R.

 $\Phi: X \bowtie Y \to X' \bowtie Y', \text{ quasi-isometry}$

Tile $X \bowtie Y$ with boxes $\mathcal{B}(R)$ of scale R.

 $\Phi: X \bowtie Y \to X' \bowtie Y', \text{ quasi-isometry}$

1) Coarse differentiation $\Rightarrow \exists$ a *suitable* scale R such that $\Phi(\uparrow) \approx \uparrow$

Tile $X \bowtie Y$ with boxes $\mathcal{B}(R)$ of scale R.

 $\Phi: X \bowtie Y \to X' \bowtie Y', \text{ quasi-isometry}$

- 1) Coarse differentiation $\Rightarrow \exists$ a *suitable* scale R such that $\Phi(\uparrow) \approx \uparrow$
- 2) Vertical quadrilaterals + good scale $R \Rightarrow On$ almost all boxes $\mathcal{B}(R)$ at scale $R : \Phi_{|\mathcal{B}} \approx (\Phi_{\mathcal{B}}^X, \Phi_{\mathcal{B}}^Y)$ or $\Phi_{|\mathcal{B}} \approx (\Phi_{\mathcal{B}}^Y, \Phi_{\mathcal{B}}^X)$

Figure 17 – Vertical quadrilateral

Tile $X \bowtie Y$ with boxes $\mathcal{B}(R)$ of scale R.

 $\Phi: X \bowtie Y \to X' \bowtie Y', \text{ quasi-isometry}$

- 1) Coarse differentiation $\Rightarrow \exists$ a suitable scale R such that $\Phi(\uparrow) \approx \uparrow$
- 2) Vertical quadrilaterals + good scale $R \Rightarrow On$ almost all boxes $\mathcal{B}(R)$ at scale $R : \Phi_{|\mathcal{B}} \approx (\Phi_{\mathcal{B}}^X, \Phi_{\mathcal{B}}^Y)$ or $\Phi_{|\mathcal{B}} \approx (\Phi_{\mathcal{B}}^Y, \Phi_{\mathcal{B}}^X)$
- 3) $m \neq n \Rightarrow \exists L >> R$ such that on all boxes at scale L, $\Phi_{|\mathcal{B}} \approx (\Phi_{\mathcal{B}}^X, \Phi_{\mathcal{B}}^Y)$

Figure 17 – Vertical quadrilateral
Proof of Theorem C

Tile $X \bowtie Y$ with boxes $\mathcal{B}(R)$ of scale R.

 $\Phi: X \bowtie Y \to X' \bowtie Y', \text{ quasi-isometry}$

- 1) Coarse differentiation $\Rightarrow \exists$ a suitable scale R such that $\Phi(\uparrow) \approx \uparrow$
- 2) Vertical quadrilaterals + good scale $R \Rightarrow On$ almost all boxes $\mathcal{B}(R)$ at scale $R : \Phi_{|\mathcal{B}} \approx (\Phi_{\mathcal{B}}^X, \Phi_{\mathcal{B}}^Y)$ or $\Phi_{|\mathcal{B}} \approx (\Phi_{\mathcal{B}}^Y, \Phi_{\mathcal{B}}^X)$
- 3) $m \neq n \Rightarrow \exists L >> R$ such that on **all** boxes at scale L, $\Phi_{|\mathcal{B}} \approx (\Phi_{\mathcal{B}}^X, \Phi_{\mathcal{B}}^Y)$
- 4) Given two points sharing their height, Φ send them almost on the same height $\Rightarrow \Phi \approx (\Phi^X, \Phi^Y)$

Figure 17 – Vertical quadrilateral

1) Theorem $\mathsf{C} \Rightarrow \exists \Phi_i \text{ q.i of } \mathbb{R} \ltimes_{A_i} N_i \text{ such that } \Phi \approx (\Phi_1, \Phi_2).$

- 1) Theorem $C \Rightarrow \exists \Phi_i \text{ q.i of } \mathbb{R} \ltimes_{A_i} N_i \text{ such that } \Phi \approx (\Phi_1, \Phi_2).$
- 2) Φ_1 height respecting $\Rightarrow \exists \Psi_1 : N_1 \to N_1$ such that $\Phi_1 \approx (\mathrm{id}_{\mathbb{R}}, \Psi_1)$

- 1) Theorem $\mathsf{C} \Rightarrow \exists \Phi_i \text{ q.i of } \mathbb{R} \ltimes_{A_i} N_i \text{ such that } \Phi \approx (\Phi_1, \Phi_2).$
- 2) Φ_1 height respecting $\Rightarrow \exists \Psi_1 : N_1 \to N_1$ such that $\Phi_1 \approx (\mathrm{id}_{\mathbb{R}}, \Psi_1)$
- 3) Show that $\Psi_1 \in \operatorname{Bilip}(N_1, d_{\operatorname{Ham}})$.

- 1) Theorem $\mathsf{C} \Rightarrow \exists \Phi_i \text{ q.i of } \mathbb{R} \ltimes_{A_i} N_i \text{ such that } \Phi \approx (\Phi_1, \Phi_2).$
- 2) Φ_1 height respecting $\Rightarrow \exists \Psi_1 : N_1 \to N_1$ such that $\Phi_1 \approx (\mathrm{id}_{\mathbb{R}}, \Psi_1)$
- 3) Show that $\Psi_1 \in \operatorname{Bilip}(N_1, d_{\operatorname{Ham}})$.
- 4) $\Phi \approx (\mathrm{id}_{\mathbb{R}}, \Psi_1, \Psi_2) \quad (\Rightarrow (1, c) \mathsf{Ql})$

Perspectives

• Q.I. classification of $\mathbb{R} \ltimes (N_1 \times N_2)$.

Perspectives

- Q.I. classification of $\mathbb{R} \ltimes (N_1 \times N_2)$.
- Use Irene Peng's methods to achieve similar results for the solvable Lie groups $\mathbb{R}^p \ltimes (N_1 \times N_2)$

Perspectives

- Q.I. classification of $\mathbb{R} \ltimes (N_1 \times N_2)$.
- Use Irene Peng's methods to achieve similar results for the solvable Lie groups $\mathbb{R}^p \ltimes (N_1 \times N_2)$
- Remove some assumptions : $m \neq n$; (Busemann)

- Q.I. classification of $\mathbb{R} \ltimes (N_1 \times N_2)$.
- Use Irene Peng's methods to achieve similar results for the solvable Lie groups $\mathbb{R}^p \ltimes (N_1 \times N_2)$
- Remove some assumptions : $m \neq n$; (Busemann)
- What about $X_1 \bowtie X_2 \bowtie ... \bowtie X_n$?

Thank you for your attention.

