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Geometry of horospherical products

Y

X

Figure 2 � Horospherical product X ./ Y

Study the geometry of X ./ Y :

� Shapes and lengths of geodesics

� Description of the visual boundary

� Geometric rigidity of quasi-isometries
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Gromov program for classi�cation of groups

Classifying groups up to quasi-isometry.

QI rigid classes :

� Free Abelian groups (M Gromov ; P.Pansu)

� Nilpotent groups, hyperbolic Groups (M.Gromov)

Non QI rigid class :

� Solvable groups (A.Erschler)
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Classi�cation of solvable groups

Theorem (Farb-Mosher, 1999)
Classi�cation up to quasi-isometry of Baumslag-Solitar groups BS(1,n).

Theorem (Eskin-Fisher-Whyte, 2012)
Classi�cation up to quasi-isometry of Diestel-Leader graphs DL(p, q) and

of solvable Lie groups Sol(p, q).

Theorem (Eskin-Fisher-Whyte, 2012)
There exists a regular graph which possess an isometry group acting

transitively on it which is not quasi-isometric to any Cayley graph.
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Gromov hyperbolic and

Busemann spaces



Settings

Let (X, dX) geodesic, locally compact, δ-hyperbolic space.

+ Busemann space (The distance between two geodesics is convex) .

Examples :

� CAT(−1) ⇒ RnA N ⇒ Hn

� Trees

H
2z

R
2; ds2 = e

−2z
dx

2 + dz
2

x

Figure 3 � Log model of the hyperbolic

plane
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Figure 4 � Tree
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Height functions and vertical geodesics

De�nitions
Let x0 ∈ X and �x a ∈ ∂x0X. Let k ∈ a, the height function hX on X

with respect to a is :

∀x ∈ X, hX(x) = −βa(x) = sup
t→+∞

(
dX(x, k(t))− t

)
A geodesic is called vertical if one of its ends is in a.

z

x

h(A) = 1

h(B) = 2

A

B

Figure 5 � Log model of H2 :

h(x, z) = z

H
2z

xA

B

a

Figure 6 � Vertical geodesics of H2
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Horospherical products and

their geodesics



De�nition and Examples

De�nition (Horospherical product)
Let X and Y be two δ-hyperbolic spaces. Let hX and hY be their

respective height functions. The horospherical product X ./ Y is :

X ./ Y :=
{

(x, y) ∈ X × Y | hX(x) = −hY (y)
}(

=
⋃
z∈R

Xz × Y−z

)

A1

B1

z

x1

B2

x2

A2

H
2

↑

H
2

↓

Figure 7 � H2 ./ H2 = Sol
Figure 8 � T3 ./ T3 = Cay(Z2 o Z)
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Distance on X ./ Y

De�nition (dX./Y )
The distance dX./Y is the length path metric induced by N(dX , dY ) on

X × Y , with N an admissible norm of R2.

Additional assumption on X and Y :

Geodesically complete (geodesics are in�nitely extendable)

⇒ X ./ Y is connected

Theorem A (F, 2020)
There exists C(δ,N) ≥ 0 such that :

dX./Y = dX + dY −∆h± C

9
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Sketch of proof for Theorem A

h

X

Y

p2

p1

Figure 9 � Sketch
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Length of geodesic projections

Proposition
Let X be a δ-hyperbolic space and let c be a path of X. If [p, q] is a

geodesic segment linking the endpoints of c, then for all x ∈ [p, q] we

have

dX(x, im(c)) ≤ δ |log2 l(c)|+ 1

If h+(c) ≤ h+
(
[p, q]

)
−∆H, Then :

l(c) ≥ dX(p, q) + 2∆H

h

p
q

[p, q]

c

Vp

∆H

Vq

Figure 10 � A not high enough path
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Distance description

Let p1 = (x1, y1) and p2 = (x2, y2) be two points of X ./ Y and let

c be a path of X ./ Y linking p1 to p2. Then

l(c) ≥ l(cX) + l(cY )

2

≥ dX(x1, x2) + dY (y1, y2)− |h(p1)− h(p2)|+ 2∆HX + 2∆HY

Theorem A (dX./Y )
There exists C(δ,N) such that

dX./Y = dX + dY −∆h± C

Corollary(
X ./ Y, dl1

)
and

(
X ./ Y, dl2

)
are (1, C)-quasi-isometric.
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Geodesic segments

Corollary
A geodesic segment α is close to the union of three vertical geodesics.

V1

V2

(V1,X, V2,Y )

X

Y

h

p1

p2

α

NC(V2)

Figure 11 � Geodesic segment of X ./ Y
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Geodesic lines of X ./ Y

Theorem B (F, 2020)
Any geodesic line α of X ./ Y veri�es at least one of the two following

statements :

1. α is close to a X-type geodesic.

2. α is close to a Y -type geodesic.

h

X
Y

X − type

Y − type

Figure 12 � Geodesic line types
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Visual boundary of X ./ Y

Corollary
Let aX ∈ ∂X et aY ∈ ∂Y . The visual boundary of X ./ Y is :

∂(X ./ Y ) =
((
∂X \ {aX}

)
× {aY }

)⋃(
{aX} ×

(
∂Y \ {aY }

))

Y

h

X (∂X \ {aX})× {aY }

{aX} × (∂Y \ {aY })

Figure 13 � Visual boundary of X ./ Y

Example : ∂
(
RnDiag(A1,−A2) (N1 ×N2)

)
= N1 ×N2
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Proof of Theorems B

p1
p2

h

Figure 14 � Geodesic segment

� Two behaviours for geodesic segments : ↗↘↗ or ↘↗↘.

� Geodesic rays of X ./ Y only change once of monotonicity.

� So do bi-in�nite geodesics ⇒ Theoreme B

� Geodesic ray classi�cation ⇒ Characterisation of the visual boundary

of X ./ Y

16
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Geometric rigidity of

quasi-isometries



Geometric rigidity

Assume :

· X, Y , X ′ and Y ′ are endowed with admissible disintegrable

measures.

· X and Y (resp. X ′ and Y ′) do not share the same exponential

growth parameter m > n (resp. m′ > n′).

Theorem C : Geometric rigidity (F, 2022)
Let Φ : X ./ Y → X ′ ./ Y ′ be a (k, c)-quasi-isometry. There exist

C(k, c, ./) ∈ R, ΦX : X → X ′ and ΦY : Y → Y ′ two quasi-isometries

such that :

d./
(
Φ, (ΦX ,ΦY )

)
≤ C

17
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Geometric rigidity consequences

Theorem D (F, 2022)
Let S1 = RnA1 N1 and S2 = RnA2 N2 be two simply connected,

negatively curved Lie groups (Heintze groups) such that

tr(A1) 6= tr(A2), then :

QI
(
RnDiag(A1,−A2) (N1 ×N2)

)
= Bilip(N1)× Bilip(N2)

Bi-Lipschitz for the left-invariant Hamenstädt distance ∀n, n′ ∈ Ni :

dHam(n, n′) = exp

(
−1

2
lim

s→+∞

(
2s− dSi

(
(−s, n), (−s, n′)

)))

18
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Admissible desintegrable measures

Let (X,µX) be a Gromov, Busemann measured metric space, µX is

an admissible desintegrable measure if :

(a) ∀z ∈ R, ∃µX
z measure on Xz such that ∀U ⊂ X :

µX(U) =

∫
z∈R

µX
z (Uz)dz

(b) There exists r > 0 such that ∀a, b ∈ X, µX
h(a)(Br(a)) � µX

h(b)(Br(b))

(c) There exists m > 0 such that ∀z0 ∈ R, ∀U ⊂ Xz0 :

∀z ≤ z0, em(z0−z)µX
z0(U) � µX

z (πz(U))

Where :

· Uz = U ∩ h−1(z)

· πz(U) is the vertical projection of U on Xz.

19
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h(b)(Br(b))

(c) There exists m > 0 such that ∀z0 ∈ R, ∀U ⊂ Xz0 :

∀z ≤ z0, em(z0−z)µX
z0(U) � µX

z (πz(U))

Where :

· Uz = U ∩ h−1(z)

· πz(U) is the vertical projection of U on Xz.
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Box-tiling of X ./ Y

De�nition : Box B(x,R) in X.
Let x ∈ X, R > 0 and C(x) a cell of nucleus x. (C(x) ∼ rough horizontal

disk centered at x)

B(x,R) :=
⋃

z∈]h(x)−R;h(x)]

πz(C(x))

B(x,R) R

h

x
nR

(n− 1)R

Figure 15 � Box Tiling of X

BY

BX

B

Figure 16 � Box in X ./ Y
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Proof of Theorem C

Tile X ./ Y with boxes B(R) of scale R.

Φ : X ./ Y → X ′ ./ Y ′, quasi-isometry

1) Coarse di�erentiation ⇒ ∃ a suitable scale R such that Φ(↑) ≈↑
2) Vertical quadrilaterals + good scale R ⇒ On almost all boxes

B(R) at scale R : Φ|B ≈
(
ΦX
B ,Φ

Y
B
)
or Φ|B ≈

(
ΦY
B ,Φ

X
B
)

3) m 6= n ⇒ ∃L >> R such that on all boxes at scale L,

Φ|B ≈
(
ΦX
B ,Φ

Y
B
)

4) Given two points sharing their height, Φ send them almost on the

same height ⇒ Φ ≈
(
ΦX ,ΦY

)

X

Y

h

Figure 17 � Vertical quadrilateral
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Theorem C ⇒ Theorem D

We have : (RnA1 N1) ./ (RnA2 N2) = RnDiag(A1,−A2) (N1 ×N2)

We want : QI
(
RnDiag(A1,−A2) (N1 ×N2)

)
= Bilip(N1)× Bilip(N2)

1) Theorem C ⇒ ∃ Φi q.i of RnAi
Ni such that Φ ≈ (Φ1,Φ2).

2) Φ1 height respecting ⇒ ∃Ψ1 : N1 → N1 such that Φ1 ≈ (idR,Ψ1)

3) Show that Ψ1 ∈ Bilip(N1, dHam).

4) Φ ≈ (idR,Ψ1,Ψ2)
(
⇒ (1, c)-QI

)
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Perspectives

X ⊲⊳ Y

BY

BX

B

� Q.I. classi�cation of Rn (N1 ×N2).

� Use Irene Peng's methods to achieve similar results for the solvable

Lie groups Rp n (N1 ×N2)

� Remove some assumptions : m 6= n ; (Busemann)

� What about X1 ./ X2 ./ ... ./ Xn ?
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The End

Thank you for your attention.

X ⊲⊳ Y

24
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